
Empirical Software Engineering (2024) 29:147
https://doi.org/10.1007/s10664-024-10528-7

Consensus task interaction trace recommender to guide
developers’ software navigation

Layan Etaiwi1 · Pascal Sager2,3 · Yann-Gaël Guéhéneuc4 · Sylvie Hamel5

Accepted: 2 July 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Developers must complete change tasks on large software systems for maintenance and
development purposes. Having a custom software system with numerous instances that meet
the growing client demand for features and functionalities increases the software complex-
ity. Developers, especially newcomers, must spend a significant amount of time navigating
through the source code and switching back and forth between files in order to understand
such a system and find the parts relevant for performing current tasks. This navigation can
be difficult, time-consuming and affect developers’ productivity. To help guide developers’
navigation towards successfully resolving tasks with minimal time and effort, we present a
task-based recommendation approach that exploits aggregated developers’ interaction traces.
Our novel approach, Consensus Task Interaction Trace Recommender (CITR), recommends
file(s)-to-edit that help perform a set of tasks based on a tasks-related set of interaction traces
obtained from developers who performed similar change tasks on the same or different cus-
tom instances of the same system. Our approach uses a consensus algorithm, which takes as
input task-related interaction traces and recommends a consensus task interaction trace that
developers can use to complete given similar change tasks that require editing (a) common
file(s). To evaluate the efficiency of our approach, we perform three different evaluations. The
first evaluation measures the accuracy of CITR recommendations. In the second evaluation,
we assess to what extent CITR can help developers by conducting an observational controlled
experiment in which two groups of developers performed evaluation tasks with and without
the recommendations of CITR. In the third and last evaluation, we compare CITR to a state-
of-the-art recommendation approach, MI. Results report with statistical significance that
CITR can correctly recommend on average 73% of the files to be edited. Furthermore, they
show that CITR can increase developers’ successful task completion rate. CITR outperforms
MI by an average of 31% higher recommendation accuracy.

Keywords Consensus algorithm · Recommendation systems · Mylyn interaction traces ·
Task-related interaction traces · Software navigation · Maintenance

Communicated by: David Lo

Extended author information available on the last page of the article

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10528-7&domain=pdf
http://orcid.org/0000-0001-9250-7578

 147 Page 2 of 46 Empirical Software Engineering (2024) 29:147

1 Introduction

Software companies understand the importance of tailor-made software systems that accom-
modate different needs, from clients’ specific required features to technological frameworks.
Accordingly, these companies are more inclined to develop customised software systems that
meet their particular clients’ demands better than off-the-shelf software systems, and more
reliable than completely original systems. For example, many clients adopt custom software
systems, such as Web and mobile applications, e-commerce solutions, CRM (with a global
market to reach $50 billion by 2025 CRM 2022) and ERP (a global market to reach $78.4
billion by 2026 Oracle 2022) systems, to maintain ownership of unique systems, seamless
integration with their existing systems, and increased security and reliability.

To build client-specific software, developers extend an original software system in the
desired direction by forking. Traditionally, forking is the practice of copying a shared code-
base, under a new name, to create a logically independent software system that may never
be merged into the root codebase (Hammouda et al. 2012). Through this practice, a software
company can create independent forks of their original software system, customize each
fork’s functionalities or add new features in response to client requests.

One of the challenges of building custom software systems is meeting the increasing
clients’ requests for new features and functionalities. As clients’ requests grow, so do the
size and complexity of each software instance. Thus,maintaining and developing each client’s
instance become more and more difficult, costly, and time-consuming (Soh et al. 2013a).

Indeed, software complexity increases themental effort needed by developers, specifically
newcomers, to comprehend, maintain, and evolve the software. In fact, program comprehen-
sion has been reported as one of the developers’ main challenges (LaToza et al. 2006).
It involves reading large volumes of documentation, navigating through large codebases,
running complex systems, debugging tangled use cases, etc. It may take up to 35% of the
developers’ time to navigate and understand source-code files for particular change tasks (Ko
et al. 2006). Thus, it requires developers to spend a valuable fraction of their time and effort
exploring scattered pieces of code rather than completing their change tasks. For example,
Eclipse bug report #2616131 required code change in only two files but it took the developer
three days of navigating and understanding the code before making these changes (Lee et al.
2014).

Some of the change tasks that developers perform on customised software instances,
whether they are development, maintenance, or evolution tasks, are the same for each client
or very similar by virtue of clients having similar needs and using customised versions of
the same software systems. An example of exact tasks can be a bug found in the codebase
of a client’s instance, which must be fixed in all instances. An example of similar tasks can
be features that were implemented for some clients and then later requested by other clients.
Consequently, completing these types of tasks for each client requires developers to interact
with the same or similar source-code file(s) (Ramsauer et al. 2016). Hence, we define a (exact
and similar) change task as follows:

Definition 1 A change task refers to either fixing bugs, improving performance, or imple-
menting new features.

Definition 2 Exact or similar change tasks are tasks that can be implemented on each client’s
software instance and hence require developers to interact with the same or similar source-
code file(s) to successfully perform them.

1 https://bugs.eclipse.org/bugs/show_bug.cgi?id=261613

123

https://bugs.eclipse.org/bugs/show_bug.cgi?id=261613

Empirical Software Engineering (2024) 29:147 Page 3 of 46 147

As a software developer performs a change task, she spends time understanding the soft-
ware system, interacting and navigating through its source-code elements (i.e., packages,
files, classes, fields, methods, functions, etc.), and making modifications. The process of
completing the change task generates events for every activity that the developer performs.
After completing the change task, the developer obtains a task interaction trace consisting of
source-code elements and their relationships in the form of events. In this study, we only con-
sider collecting file-level events, i.e., activities performed on system files. When the same or
similar change tasks are performed bymultiple developers on different instances, each devel-
oper obtains task interaction trace from completing each task. Eventually, for each particular
change task, developers form a Task-related Set of Interaction Traces (TSITs).

Definition 3 Developers’ events are generated by developers’ activities on source-code ele-
ments (i.e., opening, searching, editing, etc.) while completing a change task.

Definition 4 A developer’s interaction trace (IT) is a set of events obtained by developers
after the completion of a change task.

Definition 5 Task-related Set of Interaction Traces (TSITs) is a set of developers’ interaction
traces after the completion of similar change tasks.

Developers’ interactions have been used to study and build tools that can assist developers
to cope with the challenge of effectively and efficiently developing and maintaining software
systems. In particular, some works used developers’ interaction histories to present source-
code elements with which developers frequently interacted to create exploration strategies
and investigate how developers understand programs (Kersten and Murphy 2006; Soh et al.
2013b; Sahm and Maalej 2010).

Some previous works collected and analysed developers’ interactions for predicting code
context that can be used for navigating directly to related source-code elements when com-
pleting a change task (Biegel et al. 2015; Robillard 2008; Wan et al. 2020). Other works
focused on mining interaction traces to recommend files-to-edit based on association rules
(Lee et al. 2014; Singer et al. 2005; Ying et al. 2004), recommend navigation patterns (DeLine
et al. 2005), and cluster interactions to recommend textually related elements (Lee and Kang
2013).

While these works help developers complete their tasks by recommending source-code
elements, none considered studying and supporting instances of software and their similar-
ities, or providing task-specific recommendations. Rather, they only considered software in
a isolation and provided recommendations for the entire software system. Moreover, some
of these works fail to provide developers with accurate-enough recommendations (Lee and
Kang 2011; Robbes et al. 2010). For example, when Lee and Kang (2011) evaluated their
approach against Team Tracks (DeLine et al. 2005), Team Tracks recommended three meth-
ods, none of which were required for completing the change task. Furthermore, most of
these works overlooked newly-hired developers. They assumed that developers have some
understanding of the software systems and required them to start interacting with task-related
elements to use these elements as input to the approaches before making recommendations.

Some of the approaches, particularly MI (Lee et al. 2014), NavTracks (Singer et al.
2005) and Mining Change Histories (Ying et al. 2004), built their recommendations using
association rules between elements frequently edited or viewed together,which lead to recom-
mending unrelated elementswhen developers interactedwith the “wrong” elements, typically
because they do not yet understand the software systems. Thus, we argue that it is unrealis-
tic to assume that developers can start interacting with relevant elements without any prior

123

 147 Page 4 of 46 Empirical Software Engineering (2024) 29:147

experience with the software system to provide recommendations. In this study, we want to
help developers, particularly newly-hired developers, understand and navigate through the
files to perform change tasks by recommending tasks-related interaction traces that contain
a set of relevant files-to-edit without the need to interact with the system beforehand.

We propose Consensus Task Interaction Trace Recommender (CITR); a task-based rec-
ommendation approach that recommends file(s)-to-edit to developers based on an aggregated
set of interaction traces. We consider in this study selection and edit types of events for a
broad context of input interactions and higher recommendation accuracy (Lee et al. 2014).
The purpose of our approach is to utilize the formation of task-related set of interaction
traces to recommend files that are relevant to a given set of similar change tasks. Thus, our
approach targets developers’ interaction traces from previously completed same or similar
tasks on custom software’s instances as input data rather than interaction traces from the
software as whole. By applying a consensus algorithm to developers’ interaction traces, our
approach creates a consensus task interaction trace as a recommendation. Each recommenda-
tion comprises a consensus set of relevant file(s)-to-edit and help perform new change tasks
that are similar to the input task-related interaction traces.

Our general hypothesis is that CITR can guide developers, whether they are familiar with
the software or have no prior knowledge, through files navigation, allowing them to complete
their tasks successfully, with substantially less time and effort, minimal navigation to unre-
lated files, and ultimately help with program comprehension and increase their productivity.

To investigate this hypothesis, we conduct a series of evaluations. We determine the accu-
racy of the recommendation results by defining a ground truth and using precision and recall
metrics. In the second evaluation, we conduct an observational controlled experiment of 50
developers undertaking identical evaluation change tasks with and without CITR recommen-
dations and quantitatively analyze their tasks completion success rate. We finally compare
CITR against MI (Lee et al. 2014), an existing file-level recommendation approach.

– When comparing our results to the ground truth data, quantitative results indicate that our
approach can recommend file(s)-to-edit with average precision of 74%, recall of 68%,
and F-measure of 68%.

– A detailed qualitative analysis of the experiment supported by video recordings reveals
that developers with CITR recommendations can complete their tasks in less than half
of the time and effort needed by the control group and with a higher completion rate of
94%.

– The controlled experiment shows that developers with CITR recommendations under-
stand and navigate through system elements better than those without. Developers in the
control group performed unstructured navigation and relied on guessing and glancing.

– The comparison demonstrates that the recommendations returned by CITR have a higher
accuracy than those of MI (Lee et al. 2014).

The rest of the article is structured as follows: in the next section, we support our work
with a motivating example. In Section 3, we describe our approach. In Section 4, we review
the related work. An overview of the consensus algorithms is discussed in Section 5. In
Section 6, we implement a study to collect developers’ ITs and apply the consensus algorithm
to generate recommendations. In Section 7, we apply three evaluation methods to investigate
the success of the approach. In Section 8, we report and discuss results. In Section 9, we
discuss limitations. Finally, in Section 10, we conclude the article and discusses plans for
future works.

123

Empirical Software Engineering (2024) 29:147 Page 5 of 46 147

2 Motivating use case

To illustrate the motivation and potential benefit of our approach, we consider the scenario of
a new software developer, Alice, who has been recently hired as a software support engineer
at our company. She has been assigned to the Environmental Analysis Software, which is one
of the many large software systems that the company offers. Her role consists of enhancing
the software, troubleshooting, and identifying solutions for technical issues.

As a large software company, we build customised software systems to help small and
large businesses deal with rapid technology advances and resolve their very specific needs.
We encourage our developers to collect their interactions in the form of eventswith the system
when performing any type of programming tasks.

Throughour defectmanagement tool, clientBob reported a launchbugon the configuration
page. He reported that when he adds a new plug-in to the system, the plug-in configuration
page does not launch automatically. The bug is caused by an error in the default value of the
auto start function.

As part of correcting this defect, Alice started investigating the source code prior tomaking
any modifications. Using an IDE, she tried to find all the software elements that are related to
implementing the configuration page, and then to inspect the functions that could be related
to specifying the auto start value. The package explorer displays hundreds of files. She faces
the daunting task of navigating through them and identifying related files. Eventually, after
spending a significant amount of her time investigating the very large code base, exploring
few related and many unrelated files, and reaching a dead-end failing to locate the file and the
function related to the error, Alice decided to seek help from her colleagues. Her colleagues
shared with Alice collected events generated from fixing a related bug for another client.
However, the number of events in their ITs is large and overwhelming for Alice to navigate
and identify related files. Alice needs an approach that can help her understand the relevant
part of the system better by providing the most relevant files to her task. She would benefit
from a task-based approach that aggregates her colleagues’ ITs, collected while completing
the same or similar change tasks, and recommends her with one consensus task interaction
trace that contains the file(s)-to-edit most relevant to the particular task that she is completing.

Developersworking on subsequent tasks could query through the recommended consensus
interaction traces to identifywhichfiles could be related to resolving the task at hand, therefore
enhancing program comprehension, reducing the time and effort required, and helping them
be more productive.

3 Approach

We present in the following an overview of the concept and steps of our approach, Con-
sensus Interaction Trace Recommender (CITR). Figure 1 illustrates how our approach can
be incorporated into the use case (Section 2). Having a customised software system forked
into different clients’ instances, developers regularly perform the same or similar change
tasks on each client’s instance. These developers use an event collection tool e.g., Mylyn
to collect their events with the software elements while completing tasks. In this study we
consider both types of events; selection and edit. Including both types of events provides
more context about related files to the task, allowing for a recommendation that can help
completing a broader range of similar tasks. In comparison to using only edit events, using
selection and edit events consistently increases the accuracy of file-level recommendations
(Lee et al. 2014).

123

 147 Page 6 of 46 Empirical Software Engineering (2024) 29:147

Customized Software
System

Developers' Events
Extraction

Developers' Events
Preprocessing

Applying Consensus
Algorithm

Multiple Clients’
Software Instances

Same or Similiar
Change Tasks

Events Collection
via Tools, e.g. Mylyn

Task Related
Interaction Traces

Formation

Extracted Events

Preprocessed
Events

Task Related Interaction
Traces

Consensus Task
Interaction Trace

CITR

Events Colletcion

Developers Complete Change
Tasks on Instances

Task Related Set of Interaction Traces Formation

Recommendations Generation

Recommendation

Task Related
Interaction Traces

Developers Complete Similar
Tasks on Instances

Fig. 1 Overview of the approach concept

Collected events from performing each tasks are extracted and go through multiple pre-
processing steps for noise removal. Pre-processing includes steps like eliminating Mylyn
trigger events, JAR files, and noise events. Once these events are pre-cprocessed, they are
formed into an interaction trace (IT) for each developer from every completed task. The set
of developers’ interaction traces (ITs) from each completed task creates a Task-related Set
of Interaction Traces (TSITs). Specifically TSITs contains a set of interaction traces from
all developers who completed the particular change task on the same software instance or
multiple different instances. Lastly, a consensus algorithm is then applied to the task-related
set of interaction traces to generate a Consensus Task Interaction Trace. CITR contains a
set of relevant file(s)-to-edit and that can be recommended to other developers to help them
complete tasks that are the same or similar to the input tasks on other clients’ instances.

To better illustrate the task-related set of interaction traces formation phase, we exemplify
the use case in Figure 1. A set of developers {D1, D2, D3, D4} complete the launch bug, task
T , on the configuration page on different clients’ instances using Eclipse. The developers
preform a sequence of events {e1, e2, ..., en} on the system files for the completion of the
task. Mylyn collects the sequence of events from each developer. Events are then extracted
to form an interaction trace for each developer {I T1, I T2, I T3, I T4}. The set of developers’
formed interaction traces forms task-related set of interaction traces (TSITs) for change task
T . This aggregation of developers’ ITs into task-related set of interaction traces enables us
to generate a recommendation based on developers’ interaction histories with a system by
employing a consensus algorithm that is able to produce a set of the most relevant files.

123

Empirical Software Engineering (2024) 29:147 Page 7 of 46 147

Applying the Consensus Algorithm step is the core of our recommendation approach. The
algorithm takes as an input a task-related set of developers’ interaction traces. It measures
the distance between every two input interaction traces using a predefined measure. Finally,
it generates a consensus task interaction trace that is closest to the input interaction traces
and consists of files that are most relevant to the task at hand. In the next section, we discuss
the history of the consensus algorithms, measures used, and how the algorithms function.

4 Related work

Previous research related to our work can be divided into four areas: research using devel-
opers’ interaction traces to support software engineering activities; studies using different
sources of data for building recommendation systems; building recommendation systems
using interaction traces; and research studying developers’ navigation behaviour.

4.1 Use of interaction traces for software engineering activities

Researchers studied and analyzed developers’ ITs to ease software engineering daily activi-
ties. Soh et al. (2013b) mined developers’ ITs to understand how their exploration strategies
when performing maintenance tasks can affect time and effort spent. They classified devel-
opers’ exploration strategies into referenced exploration (i.e., revisitation of entities) and
unreferenced exploration (i.e., equal frequency of visiting entities).

Similarly, (Ying and Robillard 2011) analyzed developers’ interaction histories and char-
acterized their editing styles into edit-first, edit-last, and edit-throughout. Their observation
revealed that enhancement tasks are likely to be associated with edit-last or edit-throughout.
Sanchez et al. (2015) studied ITs to investigate the correlation between work fragmentation
(i.e., interruption) and developers’ productivity. Results showed that interruption can lead to
a lower productivity level.

To reveal latent facts about the development process, (Zou et al. 2007) investigated inter-
action coupling in interaction histories and found that restructuring is more costly than other
maintenance activities.

Lastly, (Parnin andRugaber 2009) used interaction histories to discuss copingmechanisms
that developers can follow to resume their work after having been interrupted.

All these works focused on the use of interaction traces to help developers enhance the
quality of software activities. Although our work shares the same purpose of enhancing
software activities quality, we focus on the use of ITs for building a recommendation system.

4.2 Recommendation systems

To find system elements relevant to a task that developers is trying to perform, developers
have used a variety of tools, ranging from grep to program databases (Teitelman andMasinter
1981). Recent research studies used different sources of data to help build recommendation
systems to improve program comprehension, navigation, and eventually productivity.

HeatMaps (Rothlisberger et al. 2009) is a recommendation tool that computes a Degree-
of-Interest (DOI) value based on navigation history, change logs, and execution data. The
tool presents artifacts in the IDE in colors ranging from red (“hot”) to blue (“cold”) according
to the DOI value.

123

 147 Page 8 of 46 Empirical Software Engineering (2024) 29:147

Hipikat (Cubranic and Murphy 2003) on the other hand forms a group memory using
source code versions, bugs, electronic communication, and web documents. It then recom-
mends artifacts relevant to tasks based on inferring links between the archived artifacts in a
group memory.

Robillard and Dagenais (2010) could retrieve source code relevant to tasks from clusters
of change sets that contain common system elements based on defined filtering heuristics.

Both (Zimmermann et al. 2004) and Ying et al. (2004) applied association rules to CVS
data to recommend newcomers with system entities to edit.

While these approaches use system related data to generate recommendations, we focus
on using developers’ interaction histories data as a base for recommending file(s)-to-edit.

4.3 Interaction traces based recommendation systems

Several works used developers’ interaction traces to recommend or preditc relevant system
elements. Team Track (DeLine et al. 2005) helps new developers better understand and
navigate code by providing them with pieces of code to visit. It mines consecutive visits
between methods in developers’ interaction histories to find the next method to visit.

Likewise, by mining developers’ interaction histories, NavTracks (Singer et al. 2005)
forms a relationship between system files as a developer browses them and recommends files
that are relevant to the currently browsed ones.

Meanwhile, (Kersten and Murphy 2006) used interaction histories to build task contexts.
Their approach recommends system elements according to the frequency and recency of
elements in the context.

NavClus (Lee and Kang 2013) clusters sequences of navigation from interaction histories.
It uses association rules to recommend system elements that are relevant to the developer’s
current navigation.

Robbes and Lanza (2010) used change history data to propose a code completion tool that
helps developers complete their change tasks.

Switch! (Sahm and Maalej 2010) was proposed to recommend system artifacts. It bases
its recommendation on association between the context of the current task and interaction
histories.

Code context prediction was proposed by Wan et al. (2020). Based on learned abstract
topological patterns from Mylyn interaction histories, the approach predicts code context as
developers perform a development task.

Similarly, (Robillard 2008) proposed a similar approach called Suade. The approach pre-
dicts elements based on topology of a graph of structural dependencies for the software
system. It takes as input a fuzzy set of elements that a developer interacted with and predicts
a fuzzy set of elements that are of potential interest by calculating specificity and reinforce-
ment

Although these studies use developers’ interaction traces to build recommendation or pre-
diction, they assume that developers come with some knowledge of the systems. Hence, they
require developers to start interacting with the systems, use these interactions as seeds for
the approach before providing any recommendation. In addition, recommendations are based
on association rules, which might lead to recommending unrelated elements if the develop-
ers interacted with the wrong elements. In contrast, our approach builds recommendations
without any prior interaction from the developers and does not base the recommendation on
association rules. Rather than considering the entire software system, our proposed approach
generates task-specific recommendations. Thus, when we compared our approach to MI,

123

Empirical Software Engineering (2024) 29:147 Page 9 of 46 147

CITR can recommend file(s)-to-edit that are more relevant to the given change tasks than
what MI recommended.

4.4 Studies of developer activities and behaviour

There are many works on developers’ navigation behaviours and programming activities,
factors that impact them, and strategies to understand source code.

Ko et al. (2006) conducted an exploratory study to understand how developers decide what
is relevant information to their tasks and how they keep track of this information. Their study
involved 10 developers performingmaintenance tasks on an unfamiliar software system.They
found that developers spend a significant time searching for relevant information which often
ends in failed searches.

In line with other studies on developer behavior, (Robillard et al. 2004) performed a study
of five developers performing a change task to investigate factors that contribute to effective
navigation behaviour.

To determinewhat specific questions developers askwhen performing programming tasks,
(Sillito et al. 2006) conducted a laboratory study with 25 developers. They identified 44 types
of questions developers potentially ask.

Similarly, to understand how developers perform feature location tasks, (Wang et al. 2011)
invited 38 students to perform six feature location tasks on unfamiliar systems. The study
results enabled them to build a conceptual framework that consists of a collection of phases,
patterns and actions.

Meanwhile, (Starke et al. 2009) focused their exploratory study on investigating how
developers search through source code and skim through results. They observed that devel-
opers do not inspect results closely if they believe that the results are irrelevant and prefer to
perform another search.

On the other hand, (Chattopadhyay et al. 2019) observed and recorded 10 developers
programming activities while performing development tasks to study how developers struc-
ture their development effort and whether context impact the structure. They observed that
developers organize their development work into a series of episodes with different patterns
while trying to maintain context between episodes.

While our qualitative results support some of the observations reported in these works,
our observational experiment was based on real change tasks and focused on observing the
behaviours of the experimental group of developers against the controlled group.

5 Background on the consensus algorithms

5.1 Overview of the consensus algorithms

Consensus algorithmshavebeen around for a long time.Theywerefirst investigated about two
centuries ago in the context of voting and elections, in which voters provide their preferences
on a set of candidates and the algorithm needed to provide a single ranking of the candidates
that would reflect the consensus of the voters’ preferences (Kemeny 1959).

Formally, from a set of N different ordering of the same n elements, each ordering being
called a ranking of the n elements, the problem is to find one consensus ranking, i.e., an
ordering of the n elements that is the closest to all N rankings under a chosen distance (Ali
and Meilă 2012).

123

 147 Page 10 of 46 Empirical Software Engineering (2024) 29:147

In real life applications, rankings can be incomplete. This happens when not all the n
elements are ordered in every ranking. For example, in elections, a voter could have chosen
not to take into account some of the candidates in her ranking. To deal with incomplete
rankings, works proposed normalization techniques (Brancotte et al. 2015). Before finding
the consensus of a set of rankings, the projection technique keeps, for each ranking, only
the common elements that exist in all rankings while the unification technique adds missing
elements from each ranking at the end of them. Rankings can also be not strictly-ordered,
when some elements are ranked at the same position, i.e., are tied. For example, in elections,
a voter could have chosen to put more than one candidate in first position.

5.2 Measures

To measure the distance between two rankings, various measures have been suggested
(Critchlow 1985). Most works proposed the use of the generalized form of the Kendall-
τ distance (Brancotte et al. 2015; Cohen-Boulakia et al. 2011) when dealing with a set of
incomplete, not strictly-ordered, rankings. The generalized Kendall-τ distance, G, between
two rankings r and s, is:

G(r , s) = #{(i, j) : i < j∧
((r [i] < r [j]∧s[i] > s[j]) ∨ (r [i] > r [j] ∧ s[i] < s[j])∨ (1)

(r [i] �= r [j]∧s[i] = s[j]) ∨ (r [i] = r [j] ∧ s[i] �= s[j]))} (2)

It sums the number of times elements i and j appear in different orders in the two rankings
(1), or (2) the number of times the two elements are tied (in one bucket) in one ranking but
not in the other.

The generalized Kemeny score is the sum of the generalized Kendall-τ distance between
a given ranking and all rankings in the set. Given a set of rankings with ties R, the generalized
Kemeny score K is:

K (r ,R) =
∑

s∈R
G(r , s).

An optimal consensus ranking, denoted r∗, for a set of rankings R is:

∀r ∈ Rn : K (r∗,R) ≤ K (r ,R).

5.3 Consensus algorithms

Consensus algorithmshave been applied in different domains such as bio-informatics (Cohen-
Boulakia et al. 2011), databases (Fagin et al. 2004), artificial intelligence (Pennock et al.
2000), as a means to bring forward interesting information coming from different rankings
used in these domains.

In particular, consensus algorithms were applied with varying results in bio-informatics.
Brancotte et al. (2015) studied 14 different algorithms using the generalized Kendall-τ dis-
tance and classified them into score-based and positional-based algorithms. The foremost
searches for a consensus by focusing on the disagreement between the order of the elements,
while the positional-based algorithms focuses on the position of the elements in each ranking.

Brancotte et al. (2015) extensively compared and studied all the ranking algorithms with
experiments on real, synthetic, and differently-sized datasets from different fields. The out-
comes of the experiments showed that theBioConsert algorithm (Cohen-Boulakia et al. 2011)

123

Empirical Software Engineering (2024) 29:147 Page 11 of 46 147

outperforms the other algorithms providing highest quality results on both real and synthetic
datasets. KiwikSort (Ailon et al. 2008) comes second after BioConcert, especially when the
dataset is extremely large (n > 30, 000).

While both algorithms are score-based algorithms, they differ in the way they construct
the consensus ranking. BioConcert uses a local search. Given a set of rankings, it randomly
selects one of them as a starting ranking and then continuously applies two operations until
the generalized Kemeny score is stabilized. The two operations are (1) changeBucket: moves
an element from one bucket and adds it into an existing bucket and (2) addBucket: moves an
element from a bucket to put it in a new bucket (Cohen-Boulakia et al. 2011).

KwikSort uses a divide-and-conquer approach. It randomly assigns one of the elements
as a pivot and then recursively places the rest of the elements in two buckets after and before
the pivot until a consensus ranking is reached.

6 Study setup

We carry out in the next Section three evaluation methods to assess the accuracy of the results
of our recommendation approach and the extent to which CITR can improve developers’ pro-
ductivity maintaining and developing a software system. These evaluations are quantitative,
qualitative, and a comparison to answer the following research questions:

RQ1 We answer this question by building ground truth data and quantitatively compare
them with the results of CITR using precision and recall measures (in Section 7.1).

RQ2 To evaluate productivity and navigation behaviour, we conduct an observational
controlled experiment of 50 developers performing evaluation change tasks with
and without the recommendations of the CITR and compare their behaviours (in
Section 7.2).

RQ3 We answer this question by comparing the results of our approach with MI recom-
mendation results under the same set of conditions (Section 7.3).

To generate the recommendations, carry out the evaluations and answer these RQs, we
conduct an experiment of participants performing change tasks to collect their events (data).
Collected events are then extracted, pro-processed, and used as training data to generate
recommendations.

Unlike previous studies, such as Zimmermann et al. (2004) and Lee et al. (2014), that
extracted and used archived developers’ events as training data to build recommendations,
we collect our data through a participant-involved experiment. As previously stated, these
approaches generate recommendations for the entire system. Therefore, the input data must
be large and include all existing developers’ events with the system. On the contrary, because
we build recommendations at the task level in this study, the input data should be limited and
come only from tasks that are similar to the tasks forwhichwe are building recommendations.

To set up the experiment, we first choose a subject system (in Section 6.1), which is the
same system that will be used for the evaluation (in Section 7). Then we define change tasks
(in Section 6.2), recruit participants (in Section 6.3), and select tools for collecting the events
(in Section 6.4). Next, we invite the participants to conduct the experiment by performing
the change tasks and collect their events with the software elements (in Sections 6.5). After
collecting and extracting the events, we pre-process them in Section 6.6. Finally, we form
task-related set of interaction traces (TSITs) and apply the consensus algorithms on these
TSITs to obtain recommendations (in Section 6.7)).

123

 147 Page 12 of 46 Empirical Software Engineering (2024) 29:147

6.1 Subject system

Among a population of Java systems, we chose an Eclipse-based plug-in, PDE (Plug-in
Development Environment), as subject system. PDE2 offers tools to create, develop, test,
debug, build, and deploy Eclipse plug-ins, fragments, features, and update sites. It comprises
approximately 2M LOC and 4,000 classes scattered across 64 sub-projects. We use PDE
because (1) it is open source, which we can use its source code freely, (2) its base code is big
enough to exemplify real systems, (3) it has been used in many software engineering research
studies, and (4) Mylyn ITs are attached to most of its fixed bug and completed feature request
tickets, which we will use later for creating the study change tasks. PDE consists of three
components and we chose to consider only the PDE-UI component. Participants will interact
with PDE-UI files to complete change tasks.

6.2 Change tasks

To define a set of change tasks for participants to perform, we explored completed tickets
related to the PDE-UI in the Eclipse Bugzilla3; Web based bugs tracking system. We queried
for tickets that weremarked as resolved and have a solution patch attached to them. Following
that, we looked through these tickets at random, reading their descriptions, replicating the
issues they described when it was possible, and putting the suggested fixes into action.

Some of the tickets were impossible to replicate because their descriptions were insuffi-
ciently detailed; some were lengthy, requiring a few hours to complete; while some required
minutes to an hour. For a ticket to be selected as a candidate change task, it had to be
marked as completed or fixed, contain a detailed description and a complete solution patch,
be reasonably difficult, and complemented by Mylyn ITs.

To measure the complexity and time needed to complete the candidate tickets, we hired a
Ph.D. student with approximately five years of industry experience as evaluator. The evalu-
ator performed the candidate tickets, noted the duration needed to complete each ticket and
measured the complexity. We used three factors to measure the level of task complexity:
time, navigation effort, and bug location. Bug location refers to whether the bug lies in a
core class or a module class. Core classes implement the core functional-
ities of the system, highly coupled, and more complex to comprehend, like classes found
in the Launcher package that handle the launching of plug-ins and features. Meanwhile,
module classes implement additional features on top of core, cohesive, loosely cou-
pled, and thus easier to comprehend, such as classes found in the Feature package or
Product package. The evaluator marked as “easy” tickets that required a fewminutes to
complete, minimal navigation, and that were module-related. He rated as “moderate” tickets
that required 20 minutes to an hour to complete, more cognitive effort to understand, and
that were module-related. Finally, he marked as “difficult” tickets that required 20 minutes
to an hour to complete, navigation through several files, and that were core-related. Lastly,
he classified as “complex” any ticket that took him longer than one hour to complete or that
he was unable to complete.

To the best of our knowledge, there is no theory that suggests the optimal length of the
experiment task. However, to prevent participant fatigue, which might lead to interruptions
or abandoning the experiment, we chose to set the maximum required task completion time
to 1 hour. We enforced this choice by randomly selecting three moderate and two difficult

2 https://www.eclipse.org/pde/
3 https://bugs.eclipse.org/bugs/

123

https://www.eclipse.org/pde/
https://bugs.eclipse.org/bugs/

Empirical Software Engineering (2024) 29:147 Page 13 of 46 147

tickets as our change tasks, which should not take longer than 45 minutes to complete, with
an additional 15 minutes of buffer time.

Soh et al. (2018) performed a similar study on Eclipse PDE-UI, invited four participants
to perform a change task on the system while video recording their screens, and collected
their Mylyn events. We take advantage of the change task used in Soh et al. (2018), adapt it
as our sixth change task and use the collected events as part of our dataset. Table 1 presents
detailed descriptions of the chosen change tasks.

6.3 Participants

Considering the size and complexity of PDE-UI, we recruited only participants with some
experience in Java and the Eclipse IDE to guarantee the reasonable successful completion of
the assigned tasks and to collect participants’ events.

We began the recruitment process by sending out emails to the contact list of some research
groups in the department of Computer and Software Engineering at Concordia University and
Polytechnique Montréal. The emails contain a link4 to an online form collecting information
about their gender, level of education, and their years of Java and Eclipse IDE experience.

We recruited 23 participants who filled in the form. Out of these 23 participants, 15 have
over three years of Java experience, while the remaining eight participants have less than
three years. They all have at least one year experience with the Eclipse IDE. We selected the
15 Java experienced developers to participate and complete the five change tasks. Among
these 15 participants (referred to as P1, ..., P15), three are female, two are postdoctoral
researchers, eight are doctoral candidates in software engineering, three are enrolled in a
Master program in computer engineering, two are professional software developers, and all
have 1 to 5 years of professional development experience. All were new to the system: none
had worked on Eclipse PDE.

We sent an invitation email to each individual participant containing a brief description
of the experiment. To avoid time conflicts, we scheduled each participant on a different date.

6.4 Events collection tools

Integrated development environments (IDEs) support developers’ activities on software sys-
tems. Numerous IDEs exist for various programming languages. However, the most used
Java IDEs are Eclipse, IntelliJ IDEA, and NetBeans. In this work, we use Eclipse IDE5.

Developers’ events with software systems are collected by task management and monitor-
ing tools, such as Mylyn6, Blaze (Fritz et al. 2014), FeebBaG (Amann et al. 2016), or DFlow
(Minelli et al. 2014). Blaze and FeedBag are Visual Studio extensions, while DFlow is a
Pharo extension. Therefore, we chose to use events generated by Mylyn because (1) Mylyn
is an Eclipse extension and (2) it is the monitoring tool that is commonly used in research
studies (Soh et al. 2018).

Mylyn is an Eclipse plug-in that monitors and collects developers’ interaction events with
system elements while performing a change task. It starts collecting events after developers
create and activate a Mylyn task for the change task on which they are working. It stops

4 Online Form
5 https://www.eclipse.org/
6 http://eclipse.org/mylyn/

123

https://docs.google.com/forms/d/e/1FAIpQLSep_AN46h8AYBKHDUelcyfm7P-Zi-v7_IVAuEq_6T8i-jPdgg/viewform?usp=sf_link
https://www.eclipse.org/
http://eclipse.org/mylyn/

 147 Page 14 of 46 Empirical Software Engineering (2024) 29:147

Table 1 Change tasks used in the study and their descriptions

Bugzilla Ticket # Task Description

304028 Task 1: Feature properties dialog win-
dow has no title

Click on the contents tab of a product config-
uration page, select one of the features, and
then click on the properties button. The prop-
erties dialog window has no title.

229024 Task 2: A tab on the overview page
shows “?” Instead of API Information

On the overview page of an extension point
schema, one of the tabs’ names is a ques-
tion mark. The name instead should be “API
Information”. PDE here is not recogniz-
ing APIINFO as an attribute.

265931 Task 3: Autostart values are not per-
sisted correctly on the plug-in

Add a plug-in and set autostart to “true”. Save
the file. Open the file in a text editor, and see
how the value of the “autostart” attribute is
still set to false.

240737 Task 4: Configuration Page is missing
a title

the configuration page of a product project is
missing a title. On the same page, the default
value of the autostart is set to 2 instead of 0.

61894 Task 5: Add a “Sort Alphabetically”
button

Add a sort button that sorts added plug-
ins Alphabetically to the “Included Plug-
ins”, “Included Features”, and “Dependen-
cies” pages of a feature project.

188904 Task 6: Add a “Validate Plug-ins” but-
ton

On the Run Configuration settings page, add
a “validate” button that validates plug-ins
before adding them.

gathering events once the developers deactivate the Mylyn task. Then, it aggregates the
collection of events, compresses, encodes, and exports them in XML format.

Mylyn events consist of consecutively-performed events with system elements to accom-
plish a task. There are eight different kinds of events: Selection, Edit, Command, Attention,
Manipulation, Prediction, Preference, and Propagation7. Selection, Edit, and Command are
directly triggered by the developers, while the others are indirect events, triggered byMylyn.
We only consider direct events.

Mylyn captures nine attributes for each event, out of which we use the four following:
(1) StructureHandle: a unique identifier of the project elements being worked on; (2) Kind:
type of event; (3) StartDate: when the event started; (4) EndDate: when the event ended; An
example of two consecutive events is shown in Table 2.

6.5 Events collection

We collected participants’ events with the system by asking each participant to perform the
change tasks on PDE-UI in a laboratory at a specific time, on the same computer, under the

7 https://wiki.eclipse.org/Mylyn/Integrator_Reference

123

https://wiki.eclipse.org/Mylyn/Integrator_Reference

Empirical Software Engineering (2024) 29:147 Page 15 of 46 147

Table 2 An example of Mylyn events

StartDate EndDate StructureHandle Kind

2018-08-08 11:43:44.97 EST 2018-08-08 11:46:09.716 EST FeatureSection.
java

Selection

2018-08-08 11:46:46.918 EST 2018-08-08 11:53:39.320 EST FeatureSection.
handleProperties()

Edit

same settings, and using the same procedure. We thus could control the events collection and
ensure that participants were not distracted or interrupted.

The participants performed their change tasks on a desktop computer running Windows
10 with dual 28” flat monitors. The source code of the PDE system along with the change
tasks are imported into an Eclipse IDE v4.10.0 workspace with the Mylyn plug-in installed.

Before they began performing their change tasks, we created, in the IDE, for each partic-
ipant, a Mylyn task for each change task. As shown in Figure 2, on the left side, the PDE
system is imported to the IDE and Mylyn tasks are created and ready to be activated under
the Task List on the right side.

We divided the 15 participants into two groups. The first group contained seven partic-
ipants, each of whom was asked to complete Change Tasks 1 and 2. The remaining eight
participants made up the second group, which preformed Change Tasks 4, 5, and 6. We then
explained to each participant the purpose of the work, directed them to the desktop station,
and informed them that they would perform two/three change tasks. Each task was given up
to 45 minutes to complete with up to 15 extra minutes if needed. We instructed participants
that there was no right or wrong solution to each task and advised them to try to complete
the tasks successfully. Participants had the choice to stop their participation at any time for
any reason. We stayed in the laboratory to assist in case of a technical problem. However, we

Fig. 2 A screen capture of the IDE before the start of a change task

123

 147 Page 16 of 46 Empirical Software Engineering (2024) 29:147

Fig. 3 Sample of Mylyn event in XML format

told participants that they could not ask programming questions related to the completion of
the change tasks.

We gave participants a sheet of paper describing each task and providing detailed instruc-
tions on how to replicate the bug to detect the current behaviour before they start making
changes to the source code; a copy of the distributed sheet is available online on our com-
panion Web site8. To provide the participants with a hint of what they have to do and type of
tasks, we created a demo change task. We gave the participants 20 minutes to replicate the
bug described in the demo task and they were not required to provide a solution for the task.

Once participants were ready to start the first task, we asked them to activate the related
Mylyn task and start navigating their ways through the source code. When the Mylyn task
was activated, Mylyn started collecting events. After the successful completion of the change
task, participants deactivated the related Mylyn task to stop the collection of events.

We then exported all Mylyn events from Eclipse IDE in XML format. The events obtained
from the completion of the five Change Tasks by the 15 participants, together with events
related to Change Task 3 from (Soh et al. 2018) by four participants, make a total of 5,550
events. Figure 3 represents a sample of an extracted Mylyn event.

6.6 Events pre-processing

We pre-processed each exportedMylyn event to extract participants’ selection and edit activ-
ities and system elements on which the activities occur. This phase goes through multiple
steps and starts by converting the extracted Mylyn XML files into CSV files.

As described in Section 6.4, there are eight types of events. Edit events are released when
developers either select or edit text in a file in Eclipse IDE,while selection events are triggered
when developers open a file. AnyMylyn triggered events are therefore removed from all CSV
files.

Mylyn specifies the system elements on which events were performed in the Structure-
Handle attribute. System elements are divided in the StructureHandle into: project name,
package, file, class, attribute or method, and the others (Soh et al. 2013a). Figure 4 shows the
parts of the StructureHandle against a real StructureHandle taken fromone of the participants’
Mylyn events, while Table 3 identifies the parts of the StructureHandle.

8 https://www.ptidej.net/downloads/replications/emse22a/

123

https://www.ptidej.net/downloads/replications/emse22a/

Empirical Software Engineering (2024) 29:147 Page 17 of 46 147

Fig. 4 Parts of Mylyn StructureHandle

The paths to elements in the StructureHandle contain special characters that create noise
and make it difficult to obtain the actual full paths. We implemented a tool that uses regular
expressions to identify the parts of StructureHandle and either remove or replace these special
characters with dots. The tool outputs a readable CompleteName for each StructureHandle
that contains no special characters. Figure 5 compares a path to a system element as exported
in the StructureHandle versus the path CompleteName after the removal of special characters.

The studied system contains some JAR files that were not related to the completion of
any change tasks. Given that JAR files are irrelevant and rather could add noise to the tasks
contexts, all participants’ events related to JAR files were therefore removed from all Mylyn
events.

According to Lee et al. (2014) and Sanchez et al. (2015), any selection and edit events
with 0-duration should be considered noise, related to developers mouse-clicking in a file.
Considering that the purpose of this work is to recommend to developers a consensus task
context that encompasses the most relative file(s)-to-edit, we removed all 0-duration events.

In the next step of pre-processing, we compared each event StructureHandle along with its
type (i.e., selection or edit) among all participants’ events for each change task individually.
Any event containing the same StructureHandle path and type was given the same unique ID.
For example, if participant P2made an edit on amethod in a particular Java filewith a specific
StructureHandle, and participant P4 performed the same edit, then both of these events were
given the same ID number. Figure 6 compares two screenshots taken from the interactions
of participant P2 and P4 for Change Task 1. Events 26 and 27 were performed by the two
participants on exactly the same StructureHandle, hold the same type, and accordingly are
assigned the same ID number.

Mylyn events relate to two levels: method-level events and file-level events. Method-level
events occur in/on classes, fields, and methods. File-level events occur on Java files, such as
opening or editing a file. Considering that our approach aims to recommend file(s)-to-edit,
we therefore keep only file level events and remove those on method level.

All collected and pre-processed participants’ events that are used to generate CITR rec-
ommendations are available online8.

Table 3 Identification of the parts of the StructureHandle in Figure 4

Part Name Matching part form StructureHandle

Project org.eclipse.pde.ui.src

Package org.eclipse.pde.internal.ui.editor.product

File VersionDialog.java

Class VersionDialog

Method configureShell

Rest QShell

123

 147 Page 18 of 46 Empirical Software Engineering (2024) 29:147

Fig. 5 StructureHandle vs. CompleteName after special characters removal

6.7 Task-related interaction traces formation and generating recommendations

Each participant’s set of events from completing one of the change tasks is grouped to form a
participant’s interaction trace (IT) and we labeled them as (I T 1, I T s, ...I T 15). Each set of
participants’ ITs from performing a task forms a task related set of interaction traces (TSITs).
Given that the study experiment involved six change tasks, thus we were able to generate six
TSITs.

Considering that the BioConcert andKwikSort algorithms provide best quality results (see
Section 5.3) and the number of rankings (interaction traces) are less than 100 in our dataset,
we choose to apply the two algorithms to generate consensus tasks interaction traces. We
later compare the results from both algorithms to determine if one of the algorithms can
possibly provide higher quality results in the case of our dataset.

The rankings, i.e., participants’ interaction traces in each TSITs in our dataset are incom-
plete rankings, thus we apply the unification normalization technique to complete the
rankings. We do not use the projection technique as it leads to the removal of events that
could be relevant. The unification technique adds a bucket at the end of each participant’s IT
that contains events that appear in other ITs but not in this particular IT. For example, assume
we have interaction traces of participants P1 and P2:

I T 1 = [[16], [8], [5], [6], [7], [22]]
I T 2 = [[18], [16], [19], [20], [5], [22]]

The application of the unification process produces the following ITs:

I T 1 = [[16], [8], [5], [6], [7], [22], [18, 19, 20]]
I T 2 = [[18], [16], [19], [20], [5], [22], [8, 6, 7]]

Fig. 6 Illustration of common events between participants hold the same ID number

123

Empirical Software Engineering (2024) 29:147 Page 19 of 46 147

Table 4 CITR after applying BioConcert and Kwiksort to TSITs of task T

BioConcert [[4], [5], [6], [9, 10], [12], [1, 2, 3, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34]]

Kwiksort [[4], [5], [6], [29, 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 30, 31, 32, 33, 34]]

Table 4 shows consensus task interaction trace after applying both algorithms on task
related set of interaction traces for a change task T . The way both algorithms process inputs
and construct the consensus is relatively similar. Specifically, they order the significant rele-
vant files in a way that minimizes the disagreement between the set of input ITs and groups
the less relevant files in a single bucket at the end of the consensus.

After examining the files in the last buckets of all the results, we observed that these files
are definitely irrelevant to the successful completion of the task because all are selection
events performed by one or two participants as part of code comprehension. Therefore, we
chose to always ignore the last bucket in our approach.

Comparing the consensus results of applying BioConcert and Kwiksort shows that they
are almost identical with minor differences. BioConcert outperforms all the other consen-
sus algorithms in quality, therefore we chose to adopt BioConcert results as our approach
recommendations.

Table 5 translates the results of CITR from the BioConcert algorithm of Task T into real
participants’ events. The rest of the results of theBioConcert algorithmalongwith translations
are available in the replication package8.

7 Evaluations

We now explain how we perform the three evaluations to answer our RQs.

Table 5 Translation of recommended consensus interaction trace from applying BioConcert into real partici-
pants’ events

ID Action

4 Selection org.eclipse.pde.ui

5 Selection org.eclipse.pde.ui.src.org.eclipse.pde.internal.
ui.editor.product.PluginConfigurationSection.java

6 Edit org.eclipse.pde.ui.src.org.eclipse.pde.internal.
ui.editor.product.PluginConfigurationSection.java

9 Selection org.eclipse.pde.core.src.org.eclipse.pde.
internal.core.product.PluginConfiguration.java

10 Edit org.eclipse.pde.core.src.org.eclipse.pde.internal.
core.product.PluginConfiguration.java

12 Selection org.eclipse.pde.ui.src.org.eclipse.pde.ui.
launcher.PluginsTab.java

123

 147 Page 20 of 46 Empirical Software Engineering (2024) 29:147

7.1 RQ1: To what degree does CITR recommend relevant files to given change tasks?

We evaluate the quality of the results of CITR to determine whether or not the consensus
algorithm can recommend accurate results by comparing the recommendations obtained in
Section 6.7 against ground truth data.

A ground truth data is the ideal set of files with which a developer should interact with
some, if not all, in order to complete a specific change task. We derived ground truth data
for the six change tasks (Subsection 6.2) by using the Mylyn events that are attached to the
Bugzilla tickets we used to create the tasks. The PDE developers useMylyn to collect, extract
and attach their interactions with the software while resolving the tickets. We extracted these
attachedMylyn events, pre-processes these events to remove any possible noise by following
the same pre-processing steps that we adopted in Subsection 6.6. Following that, we extracted
a set of files from the set of pre-processed events that the PDE developer interacted with to
resolve the ticket, whether it is a selection type of event or an edit type. These sets of files
represent the ground truth data for each of the change tasks, which we use to compare to the
results of the approach recommendations. Table 6 presents the ground truth data created for
Change Task 3. The remaining ground truth data for the other five tasks are available online8

To measure the accuracy of the recommendations and answer RQ1, we use three quanti-
tative measures: precision, recall, and F-measure, which are commonly used for evaluating
the quality of the results of recommendation systems (Lee and Kang 2013). We calculate
precision P , recall R, and F-measure F as follows (Avazpour et al. 2014):

Precision P represents the proportion of recommended elements that are correct. The
higher the precision, the more accurate the elements recommended by CITR.

P = T P

T P + FP

Recall R represents the proportion of recommended elements that are actually met. The
higher the recall, the more elements that are actually recommended by CITR.

R = T P

T P + FN

F-measure (F) represents the accuracy of the recommendation. The higher the F-measure,
the more accurate the results of CITR.

F = 2 × P × R

P + R

with T P (true positives) the recommended elements that are relevant, FP (false positives) the
recommended elements that are not relevant, and FN (false negatives) the relevant elements
that are not recommended.

Table 6 Ground truth data
created for change task 3

File Name

PluginConfigurationSection.java

IPluginConfiguration.java

Product.java

PluginConfiguration.java

123

Empirical Software Engineering (2024) 29:147 Page 21 of 46 147

7.2 RQ2: Given a change task, can CITR help guide developers’navigation paths to
relevant file(s)-to-edit and increase their productivity?

We answer this RQ qualitatively by conducting a Between-Subjects experiment with 50
developers performing a set of evaluation change tasks. The following details the experiment.

Setup We use the same system, PDE-UI, as in Section 6.1 to perform this evaluation exper-
iment as it is the subject system for this study.

Due to the COVID-19 pandemic, this evaluation changed from a laboratory setting exper-
iment to a remote observational experiment. We installed the PDE system on a laboratory
computer. After comparing the image quality of a few remote desktop services under different
internet speed and bandwidth, we choseMicrosoft Remote Desktop service as it was the only
service that did not require a fast internet connection to maintain a high quality image and
data transfer. Thus, we requested developers to install Microsoft Remote Desktop service on
their computers and we granted them a full remote access control to the laboratory computer
to perform the evaluation change tasks. Furthermore, we captured video recordings of the
developers’ screen during the experiment using VLC Media Player.

Evaluation change tasks We choose evaluation tasks that developers in this experiment
perform to evaluate whether CITR recommendations can help them complete the tasks and
increase their productivity. Specifically, we choose evaluation tasks that are similar in context
to the change tasks that were used to generate the recommendations (Subsection 6.2).

To obtain evaluation tasks, we examined tickets on the Eclipse Bugzilla tracking system
in three phases. In the first phase, we created a search query to return tickets that meet the
following criteria: (1) PDE product tickets, (2) UI component tickets, (3) status is set to
resolved, (4) resolution is set to fixed, and (5) attachment contains a patch file. The patch
file is needed to help us examine the proposed fix for each ticket and evaluate the tickets’
complexity in the last phases.

In the second phase,we extracted the tickets descriptions.We read through the descriptions
and looked for keywords to identify tickets that share the same context as the six change
tasks. Eclipse is comprised of a range of products, with PDE being one of the them. PDE is
made up of serveral components. We used the PDE-UI as subject system. PDE-UI divides
into core and several modules, including product, feature, plug-in, context, and others.
We considered tickets that reported bugs occurring in one module as sharing contextual
similarities. For example, Change Task 1 pertains to an issue present in the plug-in module.
Thus, we searched for tickets containing the keyword plug-in, reviewed their descriptions,
and confirmed their relevance to the plug-in module. From all the extracted tickets, we
found many tickets that have similar context with the change tasks and categorised them into
core and modules.

In the third phase, two authors randomly chose tickets from the second phase, performed
them, assessed their complexity based on four categories: easy, moderate, difficult, and com-
plex; description of these categories can be found in Section 6.2. For equitable evaluation,
we targeted moderate and difficult tickets that require moderate file navigation effort, call for
one to three files of source-code modification and a maximum of 30 minutes to complete. We
also invited two Ph.D. students with prior professional experience but no background in the
subject system to perform the tickets, confirm their complexity, and if they could complete
them within 30 to 45 minutes.

123

 147 Page 22 of 46 Empirical Software Engineering (2024) 29:147

Finally, with the assistance of the Ph.D. students, we considered 12 evaluation tasks that
were similar in context to the change tasks. Out of the twelve tasks, three are considered
difficult, while the remaining nine are moderate. We describe them in Table 7.

Developers We contacted developers to perform the evaluation change tasks and measure
their productivity. To invite developers to participate in the experiment, we followed the same
recruitment process as in Section 6.3.

Table 7 Evaluation tasks description

Bugzilla Ticket # Task Description

269618 Automatic wildcard on plug-ins When searching for a plug-in via
a string, you will have to input **
around the string. Fix the behaviour
to accept wildcard strings without the
**.

144533 Unnecessary white space on configu-
ration tab

Remove the unnecessary white space
on the configuration tab.

88003 Select all property Add “All” property to the plug-ins
view.

261878 Prompt to save changes on Plug-ins While browsing the plug-ins page, you
will receive a prompt to save any
changes, even if you have not made
any modifications.

171767 Large font on main tab Increasing the dialog font size results
in a portion of the main tab disappear-
ing.

101516 Sort alphabetically property It would be helpful to have the option
to alphabetically sort the listed exten-
sions in the plug-in XML editor’s
extensions section.

269107 Some controls are enabled incorrectly The browse buttons on the Configu-
ration and Launching tabs should be
greyed out if they are not selected.

88566 Tab description is missing Description of the Included plug-ins
tab is missing.

204404 Unable to use checkbox Toggling the “Only Show Selected”
checkbox in the run configuration
window does not trigger any changes.
The checkbox should only show
selected plug-ins.

223727 Configuration section overview is
missing

Incorporate a section overview into
the Configuration section of a product
project.

38536 Up and Down buttons are missing The Included Features and Build tabs
should contain Up and Down but-
tons, which enable the user to navigate
through records.

312156 Malfunctioned button The “Select Feature” button on the
plug-ins tab should allow for the addi-
tion of more features, but clicking it
does not result in any action.

123

Empirical Software Engineering (2024) 29:147 Page 23 of 46 147

We sent out invitation emails to software engineering research groups from four universi-
ties (ConcordiaUniversity, PolytechniqueMontréal, ZürichUniversity, andZürichUniversity
of Applied Sciences). The email provided them with a registration form to gather relevant
educational and programming information.Weused this information to select developerswith
different educational levels and programming experience to guarantee the generalisability of
our approach and obtain results with a variety of problem-solving methods.

We recruited 56 developers (referred to as D1, .., D56), out ofwhom six abandoned before
we scheduled them for the experiment. Out of the 50 remaining developers, five were senior
undergraduate students, 24M.Sc. students, and 21 Ph.D. students. 52% of the developers had
programming experience of over 5 years, with an average of 3 years of Java programming
experience. All developers had industrial programming experience (11 of them with more
than 5 years, while the remaining 39 between 1 to 5 years). All developers reported using
different IDEs but being unfamiliar with the subject system. We provide detailed participant
demographics in Table 8.

Procedure We applied the Between-Subjects design (Erlebacher 1977) in which there is a
control group and an experimental group, and each developer experiences only one level of
a single independent variable. Our independent variable is the recommendations with two
levels: with and without. We split the 50 developers into a control group and an experimental

Table 8 Demographics of
selected developers Education

Bachelor 5

Masters 24

Doctorate 21

Programming Experience

5 Years or More 26

3-5 Years 12

1-3 Years 12

0-1 year 0

Java Experience

5 Years or More 5

3-5 Years 5

1-3 Years 20

0-1 year 20

Eclipse IDE Experience

5 Years or More 6

3-5 Years 5

1-3 Years 12

0-1 year 27

Professional Experience

5 Years or More 11

3-5 Years 9

1-3 Years 15

0-1 year 15

123

 147 Page 24 of 46 Empirical Software Engineering (2024) 29:147

group (25 developers in each group).We ensured that developers’ education and professional
experience varied in each group. In the control group, we requested developers to perform
the evaluation tasks without the recommendations of CITR, while we provided developers
in the experimental group with the recommendations.

To ensure that the set of evaluation tasks were performed by developers with different
experience levels, we split the 12 tasks into two sets A and B, with six evaluation change
tasks in each set. Therefore, we further divided the control and experimental groups into two
sub-groups, with each sub-groups performing a different set of evaluation tasks. Figure 7
illustrates this division. Furthermore, we chose to have the two groups of developers conduct
the experiment on the same instance of the PDE-UI rather than on different customised
instances. Carrying out the experiment on the same instance should eliminate the risk of
significant result variation between developers and allow us to compare the outcomes of the
defined measures between the two groups on an equal footing.

We scheduled each developer on a particular day of their choice. Before the start of the
experiment, we emailed the tasks description file and audio-called the developers via the
Zoom conferencing software. The purpose of the call was to give a short presentation about
the experiment and allow the developers to ask any questions that might arise during the
experiment. However we remained on mute through the entire time of the experiment to
avoid any distraction and unmuted only for answering questions.

In the short presentation, we explained the concept of the study, the purpose of the experi-
ment, gave instructions on how to complete the experiment, and informed the developers that
during the experiment they were only permitted to ask clarifying questions about the tasks.
Further, the task description document explained the bug in each task, listed steps on how
to replicate the issue, and gave instructions to remotely access the laboratory desktop where
the subject system was installed. For developers in the second group of the experiment, their

Control Group

Experimental Group

Without
Recommendations

With
Recommendations

Set A
Task 1,2,3

7 Developers

Set B
Task 1,2,3

8 Developers

Set A
Task 1,2,3

7 Developers

Set B
Task 1,2,3

8 Developers

Set A
Task 4,5,6

5 Developers

Set B
Task 4,5,6

5 Developers

Set A
Task 4,5,6

5 Developers

Set B
Task 4,5,6

5 Developers

Fig. 7 Divisions of the developers into groups and sub-groups

123

Empirical Software Engineering (2024) 29:147 Page 25 of 46 147

task description document recommended the consensus task interaction traces along with
each task.

Once the developer is remotely connected, we gave each of them up to 10 minutes to
explore the system, get familiar with Eclipse and the system structure. In addition, we pro-
vided them with a practice task to familiarise them with the nature of the evaluation tasks.
Before the start of the experiment, we asked the developers to perform the tasks in the same
sequential order and try their best locating relevant file(s)-to-edit to fix the bug. We did not
ask them to make any code modification.

According to the task complexity assessment that was performed by some of the authors
and two Ph.D. students, each task required a maximum of 30minutes to complete. Therefore,
we allocated 30 minutes of time for each task in the control group of developers. As time
is one of the evaluation factors when evaluating the success of our approach, we decided to
limit the time allotted to the experimental group to 20minutes to eliminate the possibility that
developers performing unnecessary navigation knowing that they have a set of recommended
files with more than enough time. In both groups, we gave developers the option to request
an additional five to fifteen minutes if necessary,reassuring them not to worry if they were
unable to complete a task and advance to the next one.

When developers completed locating file(s)-to-edit for each evaluation task, we requested
them to fill their answers in an answer sheet. We then stopped the video recording, and
disconnected the remote access. Afterwards, we interviewed the developers and sent them a
post-experiment questionnaire to gain their insight about the approach and the experiment in
general, which will be discussed in the following section.

Measures To study whether the CITR affects developers’ productivity when performing
change tasks,we evaluated the success level of each developer bymeasuring time and comple-
tion. Time is meant to capture the total time each developer took to complete each evaluation
change task, while completion confirms whether the task was completed successfully or not.
To capture time, one of the authors collected the total time spent on each task by watching
the video recordings of all developers. Task completion was inspected by the same author
reading through developers’ answer sheets, which were used to identify the file(s)-to-edit
for the successful completion of the tasks. Blank answer sheets indicated that the developer
could not define the set of file(s)-to-edit and therefore the task was not completed. Finally,
we compared the results between the two groups for the same evaluation tasks.

In addition to measuring the ability to complete the evaluation tasks, we investigated the
effect of the recommendations on developers’ behaviour and navigation paths. We carefully
watched and analysed the video recordings of the 50 developers to study their navigation
patterns and compared the patterns between the two groups. During the observation, we
paused the videoswhenever necessary to take notes and followed themouse pointer’s route on
the screen to determinewhat files the developers interactedwith. In particular,weobserved the
navigation steps each developer took to get a good understanding of their general navigation
behaviour.

We assembled all the patterns of behaviour that were observed and summarised the most
interesting observations from each group separately. The analysis helps us define the kind
of actions developers do in completing the assigned tasks and whether providing a set of
recommendations helps improve their navigation and limit the number of consulted irrelevant
system elements.

After the experimental group completed the experiment, we interviewed the developers to
get their opinion about the experiment and CITR approach in general. We also sent them an
online post-experiment questionnaire with a series of exploratory questions. The question-

123

 147 Page 26 of 46 Empirical Software Engineering (2024) 29:147

naire helped assess the importance of the recommendations, get developers’ opinion about
the perceived improvement in their performance, and gather any feedback that could help
improve our approach.

Thequestionnaire consisted of eight questions: fromassessing the difficulty of dealingwith
unfamiliar systems, to difficulty locating related files using the help from the approach, to the
relevance of the recommended files, and to whether or not the approach helped improve their
performance completing the evaluation tasks. Five of the eight questions were rating scale
questions, one was yes/no questions, while the remaining two were open-ended questions.
The questionnaire is presented in Table 9.

7.3 RQ3: How does CITR compare to MI (Mining Programmer Interaction Histories)
Lee et al. (2014) in recommending relevant file(s)-to-edit for specific change
tasks?

We extensively searched for existing file-level recommendation tools. Results of our search
identified the following tools: NavTracks (Singer et al. 2005), MI (Lee et al. 2014), Mining
Change History (Ying et al. 2004), and NaCIN Majid and Robillard (2005). After carefully
inspecting the four tools, we decided to base our comparison onMI because it is conceptually
closest to CITR. MI is a state-of-art approach that mines developers’ interaction traces (edits
and views), generates association rules using a provided context, and recommends file(s)-to-
edit. A context is a query formed from the current developer’s interaction with a given task
at the time of recommendation (Lee et al. 2014).

Our hypothesis is that CITR recommends more relevant file(s)-to-edit than the state-of-
the-art because it forms recommendations from interaction traces related to the same or
similar change tasks rather than interactions from the entire system.

Table 9 Post-experiment questionnaire

Questions Type of Answer

Q1: When working on unfamiliar software systems, do
you have difficulty knowing where to start?

(1-5)

Q2: How difficult was locating files related to the tasks
at hand using the list of recommended files?

(1-5)

Q3: Having to deal with unfamiliar software system, do
you think recommending files eased locating files related
to the task and program comprehension?

(1-5)

Q4: How would you rate the overall relevance of the rec-
ommendedfiles to the actual files that needed code change
to complete the tasks?

(1-5)

Q5: How would you rate the impact of the recommen-
dation approach on the time needed to locate files/source
code? Do you think that saved you some time?

(1-5)

Q6: Do you think you could rely on the recommended
files to help you complete the tasks?

Yes/No

Q7: Is there anything you dislike about the proposed rec-
ommendation approach?

Open-Ended

Q8: Is there anythingwould you like to suggest to improve
the recommendation approach?

Open-Ended

1 = strongly agree; 2 = agree; 3 = neutral; 4 = disagree; 5 = strongly disagree

123

Empirical Software Engineering (2024) 29:147 Page 27 of 46 147

Context in MI is a core component that triggers recommendation. Given a developer’s
set of events from interacting with a system, multiple contexts are formed from the last
events. MI defines a v-e sized sliding window that holds a set number of view (v) and edit
(e) events. The sized sliding window moves from the first to the last event. As the sliding
window gets updated, the context is updated with the last events. MI then finds association
rules by checking whether interaction traces contain the events in the current context and
recommends files from these ITs that satisfy the condition. MI introduces several methods
for creating a context:

– MI-EAmerges view and edit events usingAND operation and generates recommendations
at edit events.

– MI-EOmerges view and edit events usingOR operation and generates recommendations
at edit events.

– MI-VAmerges view and edit events usingAND operation and generates recommendations
at view and edit events.

– MI-VOmerges view and edit events usingOR operation and generates recommendations
at view and edit events.

– MI-VOA a combination of MI-VA and MI-VO, merges view and edit events using both
AND and OR operations, and generates recommendation at view and edit events.

Procedure We simulated file(s)-to-edit recommendations in MI using the interactions gen-
erated from the six change tasks described in Section 6. According to Lee et al. (2014),
different context creation methods generate different recommendation results. Further, their
results showed that methods with the AND operation yield higher recommendation accuracy.
Therefore, we used methods with the AND operation, in particular MI-EA and MI-VOA,
since they demonstrated better performance.

Regarding the size of the sliding window, the authors of MI suggested a v-e sized sliding
window between 1 and 10. Considering that we are applying MI to ITs from completing
change tasks rather than ITs from an entire system and considering the average complexity
of our change tasks and the moderate effort required by the participants to complete the tasks,
the number of generated edit events from completing each task are not significant enough for
the methods to provide recommendations when the sliding window is greater than 6. Hence,
we created multiple contexts by setting the number of (v = n), decreasing n from 6 to 1, and
the number of (e = n), decreasing n from 5 to 0. Thus, we set the v-e sliding window between
6 and 0 for Change Task 2, 5 and 6, between 5 and 0 for Change Task 4, and between 4 and
0 for Change Task 1 and 3. For each v-e value, we run the simulation repeatedly over all the
participants’ interaction traces.

Measures We evaluated MI recommendation results against CITR recommendations and
assessed which approach recommended more relevant file(s)-to-edit using precision, recall,
and F-measure. We used the sets of ground truth data created in Subsection 7.1 as a baseline
for the comparison. The formula of the three measures is presented in same sub-section.

8 Results and discussions

We now present the results from the evaluations, analyse observations, and discuss their
implications.

123

 147 Page 28 of 46 Empirical Software Engineering (2024) 29:147

8.1 RQ1: To what degree does CITR recommend relevant files to given change tasks?

Table 10 presents the precision, recall, and F-measure values that result from comparing
the accuracy of the results of CITR to the ground truth data from the six change tasks.
The accuracy of recommendations is considered acceptable when more than half of the
recommended files are correct. Meaning, precision and recall values are .5 or higher.

The precision and recall values of the CITR recommendations generated from developers’
interaction traces of Change Tasks 1, 3, 4, 5, and 6 are encouraging. Results from Change
Tasks 1 and 3 generate a precision value of 1.00; CITR produces recommendations that are
accurate and specifically correspond to the files needed to complete these change tasks 100%
of the time. Furthermore, the recall rates show that 100% and 50% of the recommended files
were in the ground truth. In general, Change Tasks 4, 5, and 6 have over 50% precision and
recall rates. The precision, recall, and F-measure values of the CITR recommendations for
Change Task 2 are least satisfactory. However 33% of the recommended files are still relevant
and overlap with the files in the ground truth, with a recall of 33%.

To investigate the reasons behind the resulting lower values from recommendations gen-
erated from Change Task 2, which stem from false negatives, we examine thoroughly the set
of files in the ground truth data and compare them to the result of CITR. The ground truth
data includes three files DocSection.java, SchemaFormOutlinePage.java, and
DocumentSection.j- ava, while CITR recommended six files. Resolving the bug in
Change Task 2 required a code modification in only a single file “DocSection.java”
and the other two classes are irrelevant.

We investigate the other two files further to determine if there are methods that are called
among the three files all together, and we identify no shared methods. Therefore, we assume
that the ticket owner navigated and edited these unrelated files for other purposes e.g., fixing
another bug, without switching off Mylyn. Thus these two files were collected by Mylyn.

Considering that these two files are irrelevant to the change task, none of the participants
made any kind of interactions on themwhile performing the task. Consequently, CITR did not
recommend these files and instead recommended other files based on the navigation of all the
participants who completed the task. Thus, we argue that CITR provides more relevant files
than the ones in the ground truth data, files that are necessary for participants to understand
the change tasks and perform the correct changes. To assess the relevancy of recommended
files to change tasks, we plan in future work to perform an experiment in which we ask
participants to rate the relevancy of recommended files.

Results from our approach answered the first research question that considers the qual-
ity performance of CITR. Overall, CITR results achieved relatively high average precision
(73%), recall (66%), and F-measure (67%).

Table 10 Precision, Recall and
F-measure values of the results
accuracy

Precision Recall F-measure

Task 1 1.00 1.00 1.00

Task 2 0.17 0.33 0.15

Task 3 1.00 0.50 0.66

Task 4 0.80 0.67 0.73

Task 5 0.75 0.75 0.75

Task 6 0.71 0.83 0.77

123

Empirical Software Engineering (2024) 29:147 Page 29 of 46 147

RQ1: CITR achieves high precision, recall, and F-measure and recommends accu-
rate and relevant file(s)-to-edit.

8.2 RQ2: Given a change task, can CITR help guide developers’navigation paths to
relevant file(s)-to-edit and increase their productivity?

Developers success level Figure 8a and b compare the average time (in minutes) spent on
each evaluation task from Set A and B by the control group to the experimental group.

The average completion time for each evaluation task shows that the control group spent
more time than the experimental group. For the majority of tasks, developers in the experi-
mental group completed the tasks successfully in half the time of the control group. In Task
Set A, developers with recommended file(s)-to-edit spent on average 12, 6, 10, 9, 7, and 6
minutes, respectively, less average compared to developers in the control group. Similarly,
developers could complete the tasks in Task Set B in an average of 13, 8, 13, 7, 6, and 5

Fig. 8 Average time needed to complete tasks in both sets by the two groups

123

 147 Page 30 of 46 Empirical Software Engineering (2024) 29:147

minutes. Detailed tasks completion time by developers from both groups is available in the
replication package8.

The data shows that the two groups had the longest average completion time for Task 1
in Task Set A. Although the developers were given a practice task before the start of the
experiment, they still had to navigate through random classes while performing Evolution
Task 1. In contrast, the remaining tasks were completed in a shorter amount of time as
the developers had already gained familiarity with the system from the practice task and
Evolution Task 1. Remarkably, developers from both groups spent a nearly identical average
time to accomplish Task 5 in Task Set A. The task complexity level and the developers’
competence may explain this observation.

In Task Set B, we observe that the control group had an average completion time of 30
minutes for Task 1, indicating that all developer used all the given time to complete the task.
While the experimental group spent the longest amount of time on the completion of Task 1,
when compared to the other tasks. The long average spent time on Task 1 is possibly due to
the difficult level of complexity of this task and the previously mentioned lack of familiarity
with the system. Similarly, Task 3 required a high average time from the two groups. In

Fig. 9 Number of developers completed tasks in both sets by the two groups

123

Empirical Software Engineering (2024) 29:147 Page 31 of 46 147

contrast to the other tasks which are bug-related, this task is specifically a feature request:
developers must identify three files-to-edit, leading to a longer navigation duration.

Regarding completion factor, Figure 9a and b present the numbers of developers from each
group who completed each evaluation task in the two Sets. They show that the experimental
group outperformed the control group in terms of task completion rates in both Task Sets.
Examining the completion rates in Task Set A reveals that, among the seven developers in the
experimental group, the completion rate was 100% for the three first evolution tasks. Only
one out of the seven developers in the control group completed Evolution Task 1 and four
completed Evolution Tasks 2 and 3. In addition, only two developers out of five successfully
performed Tasks 4, 5, and 6, respectively.

In Task Set B, files related to the completion of Evolution Tasks 1 and 2 were identified
successfully by all the eight developers in the experimental group. Similarly, 40% (2 out of
5) of the developers located the files to solve Tasks 4 and 5. The complexity level of Task
1 and 6 is difficult as they both are core-related bugs. Predictably, none of the developers in
the control group successfully completed Task 1. For Task 6, only one developer from the
control group completed the task, compared to four out of five developers in the experimental
group. Task 3 is a feature request that demands significant file navigation, thus it is not a
surprise that only one developer could successfully locate its files, while six out of eight were
successful in the experimental group.

We expected this very low completion rate considering that developers had no prior system
related knowledge. We noticed that only two developers from the experimental group could
not identify the files related to Evolution Task 3 in Task Set B. We hypothesize the lack of
completion by the two developers was due to the type of Evolution Task 3 and navigation
effort it required. To get more insight about the reason of not completing the task, we discuss
it further with the two developers in the post-experiment interview later in this section in
“User-experience and Feedback”.

Although CITR helped diminish the average time and navigation effort for the experi-
mental group, there is still a disparity between the actual total time spent by each developer
in the group. To illustrate Table 11 shows the demographics of these developers in the group
and the time in minutes took them to complete tasks in Task Set A. Evidently, developer’s
efficiency and experience impact the amount of time and effort when dealing with an unfa-
miliar software system. Developers without CITR however spent a substantial amount of
time understanding and exploring unrelated files to find relevant files to their current tasks,
which affected their productivity negatively.

CITR recommendations increase developers’ productivity by recommending rele-
vant files and reducing navigation effort and time.

CITR effect on developers navigational behaviour Developers typically explore systems
using a variety of approaches. However, two distinct navigation behaviours were primarily
used by developers in the control group. In the first observed behaviour, after following the
steps of replicating the bug, some developers made use of the built-in Eclipse search dialog to
search for keywords related to the task at hand. Then, they spent a considerable amount of time
continually navigating through the returned results, visiting each result, switching between
files, and glancing over the source code trying to find any relevant methods. For example,

123

 147 Page 32 of 46 Empirical Software Engineering (2024) 29:147

one of the tasks reports the appearance of white lines between fields on the configuration tab.
Some developers were searching for the names of the fields that are on the tab rather than
the term “configuration tab” using the search functionality. The incorrect search keywords
resulted in the return of unrelated classes and developers spending all of their time skimming
through unrelated methods.

In the second observed behaviour, developers did not follow any search strategies. They
explored the system via unstructured exploration that included scrolling up/down the pack-
age explorer. They skimmed through the names of files to judge their relevance. If they
believed a name seemed relevant, they accessed the file and scrolled over the file elements
to identify any relevant source code. One of the developers, for instance, who was working
on the configuration tab task, began by expanding every package in the package explorer
window, reading through the names of files, and randomly opening and closing files. When
we questioned him about it during the after-experiment interview, he explained that he was
searching for a class with the name “configuration tab” while looking through the files in the
package explorer.

Table 11 Developers’
Experiences Result in Different
Task Completion Time

Experimental Group

(a) Demographics of Experimental Group

Education

Bachelor 3

Masters 13

Doctorate 9

Programming Experience

5 Years or More 15

3-5 Years 4

1-3 Years 5

0-1 year 0

Java Experience

5 Years or More 3

3-5 Years 2

1-3 Years 12

0-1 year 8

Eclipse IDE Experience

5 Years or More 5

3-5 Years 1

1-3 Years 7

0-1 year 12

Professional Experience

5 Years or More 8

3-5 Years 3

1-3 Years 7

0-1 year 7

123

Empirical Software Engineering (2024) 29:147 Page 33 of 46 147

Table 11 continued

(b) Completion Time by the Experimental Group for Tasks in Task Set A

Tasks - Set A

Task 1 Task 2 Task 3

P1 20 6 15

P2 6 4 5

P3 10 10 13

P4 7 5 11

P5 15 8 16

P6 15 8 9

P7 10 4 5

Task 4 Task 5 Task 6

P1 10 10 0

P2 6 8 6

P3 15 5 6

P4 11 9 8

P5 7 4 4

The experimental group, on the contrary, followed one same navigation approach. All
developers started performing the tasks by navigating to every recommended file, reading
through the source code, and identifying related methods or functions to be edited to resolve
the bug. Despite that we only asked the developers to point out the files that should be edited
to complete the tasks, some developers went even one step further and specified the source
code that needed to be changed or even made the change.

To further highlight the impact of the different navigation behaviours, we analyzed the
observations and identified that the two navigation behaviours by the control group were
inefficient. The main goal by all developers was to define a set of entry points, i.e., a basic
set of files with which they might begin their investigation. In the first navigation behaviour,
we noticed that developers wrongly chose search keywords that led the search engine to
return irrelevant results. Even when they chose more search keywords, the search returned a
large number of files due to the size of the project. Consequently, developers had to spend
time sifting through irrelevant search results. We also observed that some developers did
not make an attempt to comprehend the underlying cause of the bug, which would ease the
identification of the files to be changed to fix it. Instead, they simply relied on guessing
whether a file was relevant by observing the number of keywords in the file that matched the
user interface.

In the second behaviour, developers began a broad search to filter out irrelevant files by
arbitrarily browsing through the files in the package explorer. This behaviour resulted in a
frequent switch between multiple files. Due to the size of the search space and unfamiliarity
of the system, most developers in the control group found themselves engaged in an increas-
ing effort and time exploring significantly unrelated files, rounds of searches that yielded
no relevant results, and hence inability to locate file(s)-to-edit. The random browsing and
scrolling through files in the package explorer led to a few developers abandoning the tasks
within 20 to 30 minutes.

123

 147 Page 34 of 46 Empirical Software Engineering (2024) 29:147

With the experimental group, our observation reveals that developers depended heavily on
using the search dialog function to search for keywords related to fixing the bug at hand in the
recommended files only to determine the needed file(s) to complete the tasks. Considering
that the CITR recommends relevant files and the searched keywords could possibly appear in
most of the files, developers used their own judgment and programming experience and spent
limited effort comprehending methods that they believed to be relevant to the tasks. When
we asked developers to locate file(s)-to-edit that were not part of the set of recommendations,
in the case of Evolution Task 3 and 5, we observed that developers followed two different
strategies. In the first strategy, they followed the relevant methods cross-reference to locate
these files. The second strategy relied on the Eclipse built-in search tool to search for relevant
keywordswithin the current openwindow, followed by locating relevantmethods and classes.
From these observations, we found that the experimental group could apply amore structured
navigation, guide their attention and effort to understanding relevant system elements, avoid
investigating irrelevant files, and efficiently determine more related files.

CITR recommendations can guide newdevelopers to exhibit a structured navigation
behaviour that can increase their productivity.

Studies suggest that companies should collect and store their developers’ daily interac-
tions (Bao et al. 2017). The findings of our observational experiment demonstrated that using
developers’ interactions with the system can enhance navigation by resulting in a more struc-
tured behavior, as well as boost developers’ productivity by reducing navigation effort and
time. Consequently, we encourage software companies to incorporate interaction collection
through their daily operations in order to increase productivity, advance software develop-
ment, and, ultimately, satisfy client demands.

User-experience and feedback We collected developers’ answers to the interview/ques-
tionnaire questions, compared, and summarised them. Questionnaire results are reported in
Table 12.

When asked about the difficulties in finding an entry point or knowing how to start debug-
ging, 68% of the developers stated that it is very difficult while 32% had moderate to easy
time locating an entry point.

In Q2, we asked the developers to rate the difficulty of completing the tasks using CITR
recommendations. Most developers (20 out of 25) strongly agreed that completing the tasks
using CITR recommendations was not difficult at all, while the remaining five seemed to
have difficulty. These answers support that a few developers could not successfully complete
the tasks.

Table 12 Post-experiment questionnaire answers

1 2 3 4 5

Q1 Not at all 1 - 4% 3 - 12% 4 - 16% 10 - 40% Very Difficult 7 - 28%

Q2 Not at all 6 - 24% 9 - 36% 5 - 20% 5 - 20% Very Difficult 0 - 0%

Q3 Not at all 0 - 0% 0 - 0% 1 - 4% 6 - 24% Absolutely 18 - 72%

Q4 Not Related 0 - 0% 0 - 0% 3 - 20% 6 - 24% Very Related 16 - 64%

Q5 No Time Saved 0 - 0% 0 - 0% 1 - 4% 8 - 32% Saved Time 16 - 64%

Q6 Yes 24 - 96% No 1 - 4%

123

Empirical Software Engineering (2024) 29:147 Page 35 of 46 147

All developers strongly agreed with Q3 that CITR helped them understand the parts
of the system that are related to the given tasks. Beside system comprehension, developers
appeared to be extremely satisfiedwhen asked about the relevancy of the CITR recommended
files to the given tasks in Q4: 88% stated the recommendations were very relevant. In Q5,
all developers expressed a positive impression of how CITR helped them spend less time
navigating through system elements because CITR provided them a few entry points to start
with.

96% of the developers confirmed that they could completely rely on CITR recom-
mendations to help them perform similar change tasks.

During the interview, we asked each developer to share their thoughts on the experiment
in general, any obstacles they encountered, how CITR promoted their productivity, and any
general feedback. One developer stated that, when dealing with a change task, he needs to
employ a set of steps, such as comprehending the structure of the system, identifying entry
points, locating related source code, applying the change, and testing. Providing him with
recommendations from other similar change tasks helped speed the process of locating the
part of the system that is related to his task and exploring other files that he would not
have considered. Similarly to this developer, other developers said that they viewed the set of
recommendations as entry points to the system, which helped them avoid aimlessly searching
through the package explorer and saved them valuable time.

Two of the developers from the experimental group who did not complete one of their
tasks still found completing the tasks and navigating through the files challenging even with
having CITR recommendations. They reported that CITR limited their search space and
directed their navigation, however being a newcomer to the system made it daunting to skim
through the files and identify the ones to edit. We asked these developers if they believe
that is potentially due to the lack of practical Java programming experience. Even though
these developers indicated in the pre-experiment survey that they have some years of Java
experience, during the interview they confirmed that the experience is more of educational
experience rather than practical experience.

Nearly all developers were satisfied with the CITR recommendations and the nav-
igation guidance that they provide.

RQ2: CITR can helpminimize developers’ time and effort completing change tasks
and guide their navigation into a more structured navigation behaviour.

8.3 RQ3: How does CITR compare to MI (Mining Programmer Interaction Histories)
Lee et al. (2014) in recommending relevant file(s)-to-edit for specific change
tasks?

We now assess how our approach compares to the state-of-the-art approach. We report and
compare results of applying MI to our dataset using MI-EA and MI-VOA context formation

123

 147 Page 36 of 46 Empirical Software Engineering (2024) 29:147

methods with different values of v-e sliding window. To answer the research question sta-
tistically, we compute precision, recall, and F-measures for MI over the set of ground truth
data. The values from the results of the two methods of MI are then analyzed. Based on the
results, we measure the effectiveness of CITR by comparing the statistical values of CITR
to MI.

Generally, we observed that simulated file(s)-to-edit recommendations fromMI vary using
the two recommended context formation methods and various v and e values. Table 13
presents the recommendation results of applyingMI-EA to interaction traces of Change Task
1 with different v-e sliding windows along with CITR recommendations and the ground truth
of the same task. Unsurprisingly, as the value of the sliding window decreases, MI makes
recommendations atmore edit events and hence recommends a higher number of files-to-edit.
We also observed that the the set of recommended files differs for every set of v-e values in
each run. One potential reason for this difference is that MI uses the files in the context to
recommend files-to-edit by mining association rules through the set of interaction traces. As
the context gets updated, MI creates new rules, which generate different recommendations
based on the current context.

Furthermore, we observed that when v = 4 and e = 3, MI-EA recommendations
do not intersect with CITR recommendations nor the ground truth. This mismatch is
possibly due to the presence of these three files {Pderesources.properties,
PDEUIMessages.java, VersionDialog.java} in the context at the time of rec-
ommendations, and MI does not recommend files that are included in the context. On the
contrary, when v-e are set to their minimal values, v = 1 and e = 0, MI recommends all the
three correct files. However, it recommends a number of irrelevant files that have a negative
impact on the quality of the recommendations. This pattern of recommendation was evident
across most recommendations from the six change tasks. All MI-EA recommendation results
can be found online8.

Table 14 compares the recommendation results ofMI-EAwithMI-VOAmethods under the
same set of sliding windows.MI-VOA yielded a significantly larger amount of recommended
files than MI-EA, all with the same v-e values. The higher number of recommendations can
be attributed to the fact that MI-VOA generates recommendations at view and edit events,
while MI-EA only provides recommendations at edit events.

Given thatMI-EA provided less better quality recommendations overMI-VOA in the case
of our dataset, we further investigate the accuracy statistically by presenting precision, recall,
and F-measures values of the generated recommendations from MI-EA method for the six
change tasks, and comparing these values with those derived from CITR.

We computed precision, recall, and F-measure values using the set of results from MI-
EA and the set of ground truths. Figure 10 shows the resulting precision and recall curves
of the recommendation results from MI-EA under various (v-e) sliding windows. The data
depicted in the graphs indicates that, when the values of the (v-e) sliding window are at
their maximum, e.g., between 6 and 4, the values of precision and recall are either at 0 or
below 0.50. When the (v-e) values are high, the majority of the relevant view and edit events
occur within the context and MI does not recommend events that are already presented in the
context. In contrast, the results show consistently higher recall values (average of 0.72) for
Tasks 1, 3, 4, 5, and 6 when the context contains no edit events (e = 0). This suggests that
MI-EA can recommend the majority, if not all, relevant files with view-only events in the
context. Nevertheless, most of these tasks exhibited a notably low precision, with average
value of 0.26 for Tasks 1, 2, 3, and 4, which shows that the proportion of relevant files among
all predictions is minimal, as evidenced in Table 14.

123

Empirical Software Engineering (2024) 29:147 Page 37 of 46 147

Ta
bl
e
13

Si
m
ul
at
io
n
re
su
lts

of
M
I-
E
A
,C

IT
R
re
co
m
m
en
da
tio

ns
al
on

g
w
ith

gr
ou

nd
tr
ut
h
da
ta
fr
om

ch
an
ge

ta
sk

1

M
I-
E
A
(v
=
4,
e=

3)
M
I-
E
A
(v
=
4,

e=
2)

M
I-
E
A
(v
=
2,

e=
1)

M
I-
E
A
(v
=
1,
e=

0)
C
IT
R
-
G
T

P
l
u
g
i
n
V
e
r
s
i
o
n
P
a
r
t

F
e
a
t
u
r
e
S
e
c
t
i
o
n

F
e
a
t
u
r
e
S
e
c
t
i
o
n
.
j
a
v
a

F
e
a
t
u
r
e
S
e
c
t
i
o
n
.
j
a
v
a

P
d
e
r
e
s
o
u
r
c
e
s
.
p
r
o
p
e
r
t
i
e
s

.
j
a
v
a

.
j
a
v
a

F
e
a
t
u
r
e
S
e
l
e
c
t
i
o
n
D
i
a
l
o
g

F
e
a
t
u
r
e
S
e
l
e
c
t
i
o
n
D
i
a
l
o
g

F
e
a
t
u
r
e
S
e
l
e
c
t
i
o
n
D
i
a
l
o
g

P
D
E
U
I
M
e
s
s
a
g
e
s
.
j
a
v
a

.
j
a
v
a

.
j
a
v
a

.
j
a
v
a

I
H
e
l
p
C
o
n
t
e
x
t
I
d
s
.
j
a
v
a

I
H
e
l
p
C
o
n
t
e
x
t
I
d
s
.
j
a
v
a

I
H
e
l
p
C
o
n
t
e
x
t
I
d
s
.
j
a
v
a

V
e
r
s
i
o
n
D
i
a
l
o
g
.
j
a
v
a

I
P
r
e
f
e
r
e
n
c
e
C
o
n
s
t
a
n
t
s

I
P
r
e
f
e
r
e
n
c
e
C
o
n
s
t
a
n
t
s

I
P
r
e
f
e
r
e
n
c
e
C
o
n
s
t
a
n
t
s
.
j
a
v
a

.
j
a
v
a

.
j
a
v
a

P
D
E
L
a
b
e
l
P
r
o
v
i
d
e
r
.
j
a
v
a

P
D
E
L
a
b
e
l
P
r
o
v
i
d
e
r
.
j
a
v
a

P
D
E
L
a
b
e
l
P
r
o
v
i
d
e
r
.
j
a
v
a

P
d
e
r
e
s
o
u
r
c
e
s
.
p
r
o
p
e
r
t
i
e
s

P
d
e
r
e
s
o
u
r
c
e
s
.
p
r
o
p
e
r
t
i
e
s

P
d
e
r
e
s
o
u
r
c
e
s
.
p
r
o
p
e
r
t
i
e
s

P
l
u
g
i
n
V
e
r
s
i
o
n
P
a
r
t
.
j
a
v
a

P
D
E
U
I
M
e
s
s
a
g
e
s
.
j
a
v
a

P
D
E
U
I
M
e
s
s
a
g
e
s
.
j
a
v
a

U
t
i
l
i
t
i
e
s
.
j
a
v
a

P
l
u
g
i
n
V
e
r
s
i
o
n
P
a
r
t
.
j
a
v
a

P
l
u
g
i
n
V
e
r
s
i
o
n
P
a
r
t
.
j
a
v
a

U
t
i
l
i
t
i
e
s
.
j
a
v
a

U
t
i
l
i
t
i
e
s
.
j
a
v
a

V
e
r
s
i
o
n
D
i
a
l
o
g
.
j
a
v
a

123

 147 Page 38 of 46 Empirical Software Engineering (2024) 29:147

Table 14 Results of MI-EA against MI-VOA from change task 1

MI-EA (v=4, e=3) MI-VOA (v=4, e=3)

PluginVersionPart.java FeatureSection.java

FeatureSelectionDialog.java

IHelpContextIds.java

IPreferenceConstants.java

PDELabelProvider.java

PDEPlugin.java

PluginSection.java

PluginSelectionDialog.java

PluginVersionPart.java

Utilities.java

MI-EA (v=1, e=0) MI-VOA (v=1, e=0)

FeatureSection.java AbstractCreateFeatureOperation.java

FeatureSelectionDialog.java BuildSiteAction.java

IHelpContextIds.java CreateFeaturePatchOperation.java

IPreferenceConstants.java FeatureSection.java

PDELabelProvider.java FeatureSelectionDialog.java

Pderesources.properties GenerateFeatureBuildFileAction.java

PDEUIMessages.java IHelpContextIds.java

PluginVersionPart.java IPluginContentWizard.java

Utilities.java IPreferenceConstants.java

VersionDialog.java JUnitWorkbenchLaunchShortcut.java

LaunchAction.java

MainTab.java

NewFeatureProjectWizard.java

OrganizeManifest.java

PDELabelProvider.java

PDEPlugin.java

pderesources.properties

PDEUIMessages.java

PluginSection.java

PluginSelectionDialog.java

PluginVersionPart.java

Utilities.java

VersionDialog.java

To evaluate CITR recommendations accuracy and relevancy, we used MI results as a
comparison baseline. To facilitate the comparison, we take the average precision and recall
values of all the (v-e) sets for each change task. Figure 11 shows that the recommendation
accuracy of CITR is consistently higher than that of MI across all change tasks, except for
Change Task 2 where the accuracy is almost identical. For example, CITR recommends files-
to-edit from Change Task 1 with precision–recall ratio of 1.00, while MI only yields ratio of
0.17–0.52. These findings indicate that CITR was capable to recommending all relevant files

123

Empirical Software Engineering (2024) 29:147 Page 39 of 46 147

Fig. 10 Precision and recall curves of MI-EA recommendations for all change tasks

without any false positives. Similarly, CITR showed equivalent performance for Change Task
3 and 4 with precision–recall ratios of 1.00–0.50 and 0.80-0.67, respectively. In contrast, MI
only achieved precision–recall ratios of 0.13–0.18 and 0.34–0.50, respectively. Consequently,
CITR significantly outperforms MI in terms of F-measure values. As shown in Fig. 12, our
approach shows F-measures values of 1.00, 0.66, and 0.73 for Change Tasks 1, 3, and 4.
Whereas MI had average F-measure values of 0.26, 0.15, and 0.38.

As shown in the results, CITR and MI yielded comparable results for Change Task 2,
with precision–recall ratios of 0.17–0.33 and 0.24–0.31, respectively. Section 8.1 discussed
the reasons behind the lower precision–recall ratios, which we attributed to the presence
of irrelevant files in the ground truth. Moreover, the results from Change Tasks 5 and 6

Fig. 11 MI-EA and CITR precision and recall curves

123

 147 Page 40 of 46 Empirical Software Engineering (2024) 29:147

Fig. 12 CITR and MI F-measure values

revealed comparable precision but differing recall. MI demonstrated an average precision–
recall of 0.77–0.48 and 0.75–0.52, while CITR exhibited higher recall ratios of 0.75–0.75
and 0.71–0.83, respectively. To gain insight into the similar precision values, we investigated
the interaction traces generated by both tasks. Developers who completed both tasks did not
produce a significant number of events and did not interact with a large number of files,
possibly because of the complexity level of these tasks may have been within the developers’
grasp, leading to successful completion with minimal navigation. When the size of data is
low, i.e., less interaction traces, there is a greater likelihood of relevant files being present
in the recommendations, resulting in high precision and recall. Although both approaches
demonstrated strong precision, CITR producedmore relevant recommendations, with greater
recall values.

Through our tools analysis in Section 7.3, we noticed that Many recommendation tools
(Singer et al. 2005; Ying et al. 2004), including MI, require developers to start interacting
with system elements before they start recommending file(s)-to-edit. Some of these tools
base their recommendations on association rules. When a set of files are viewed and edited
together, the method associates them together and recommends them if a future developer
interacts with at least one of the files in the set. Yet, not all navigated together files are
necessarily relevant to a given task. Thus, tools based on association rules recommend files
that are not particularly related to the completion of the task at hand. These tools that require
developers’ interactions prior to recommendation are ideal when the developers are to some
degree familiar with the software system and can navigate to a few entry points.

In comparison, CITR does not build recommendations based on different contexts. In
essence, it combines and treats all developers’ interaction histories as one task context,
finds a set of consensus files among all the files, and recommends them to help completing
other similar tasks. Ability to treat all interaction traces as one context for recommendations
explains why CITR suggests more relevant files than association-rule based approaches.
To our knowledge, our approach is the first recommendation approach that recommends
file(s)-to-edit based on the consensus algorithm and does not require developers to provide
navigation hints prior to recommendation. CITR guides the navigation of newcomers with no
prior knowledge of the current system. Hence, it helps newcomers understand and complete
the tasks using the recommended files, and not relying on random navigation.

123

Empirical Software Engineering (2024) 29:147 Page 41 of 46 147

RQ3: the comparison with MI showed that CITR yields higher accuracy and rele-
vance recommendations than MI.

9 Threats to validity

Change tasks To avoid the authors’ bias of judgement, we hired an external experienced
evaluator to classify the difficulty of the candidate change tasks and determine the required
completion time of each change task. We chose moderate and difficult complexity tasks that
require a maximum of 45 minutes to complete. We avoided selecting complex tasks because
they require more time from participants and may result in interruptions or participants
dropping out of the study.

Time The chosen change tasks require less than an hour to complete. Thus, these tasks
might not reflect the full spectrum of tasks performed by developers. To limit the effect of
this choice, we used six different change tasks from a large open source system in the design
of the ITs collection (in Section 6.2), completed by participants with various educational and
industrial backgrounds, and using a common IDE and language, Eclipse and Java.

Mylyn noise This threat is related to the tool used to collect participants’ events, Mylyn
Eclipse plug-in. Mylyn introduces some noise, such as time-related noise, edit-related noise,
duplicated events, or missing events. We implemented a pre-processing approach to reduce
the impact of noise on the results of our evaluations. Despite the presence of remaining noise,
our approach could deliver high quality results.

Generalisability External threats pertain to the possibility to generalise our results. In the
study, we generated six recommendations (consensus task interaction trace) from six input
change tasks by applying the consensus algorithm to an input of four to eight participants’
interaction traces for each task. We had a challenging time recruiting participants to perform
the change tasks and thus collect their ITs due to the COVID-19 pandemic. Although there
is no recommended number of input developers’ ITs from each task in order to generate a
recommendation, we intend to expand the study to generate recommendations from a larger
number of input ITs to evaluate whether the number of input ITs could potentially affect
the outcome of the recommendations. Additionally, due to the small number of participants,
ITs were collected from participants performing the same task rather than similar tasks on
various software instances. That is to help eliminate the threat of generating heterogeneous
ITs. Having a high number of participants in the future study should allow us to consider
incorporating similar change tasks performed on different software instances.

Remote experiment Due to the COVID-19 pandemic, we had to change the observational
controlled experiment (in Section 7.2) from a laboratory experiment to a remote experiment.
We could not control interruptions, which could impair developers’ navigation behaviour and
productivity.We could only ask developers to perform the experiment in a quiet environment,
record their screens, and audio-call them using Zoom conferencing software.

Reliability Wemake all data used in this study available online in a public repository for repli-
cation purposes8. To increase the reliability of our results, we employed multiple measures:

123

 147 Page 42 of 46 Empirical Software Engineering (2024) 29:147

precision, recall, and F-measure for quantitative evaluation; an observational controlled
experiment with video observation analysis, post-experiment interviews, and questionnaire
for the qualitative evaluation; and, a comparison with an existing approach.

Measures Considering that our approach produces a set of consensus file(s)-to-edit with
which developers must interact to complete a particular task, precision and recall measures
could underestimate the accuracy of our results. Indeed, we computed precision and recall
based on ground truths that contain files with which Bugzilla ticket owners interacted while
fixing the bug. Some of these files may be actually unrelated to the ticket. However, we kept
these files in the ground truths to be conservative and not risk tainting the ground truths with
our own biases.

Observation bias We based the qualitative findings of developers’ behaviour in the obser-
vational controlled experiment (in Section 7.2) on observation and interpretation of video
recordings of developers performing some evaluation change tasks. We could have been
biassed and provided wrong interpretations. To ensure correct findings, one author watched
the videos and noted the different behaviours, followed by another authorwho cross-validated
the findings. The findings from the two authors were very identical.

10 Conclusion

In large, customised software systems, the successful completion of change tasks requires
developers to investigate elements that are scattered across the systems. Finding and under-
standing the subset of elements part of a change task is complex and requires developers’
time and effort.

We proposed an approach called consensus task interaction trace recommender, CITR,
that is based on task-related developers’ interaction traces collected from resolved change
tasks. CITR builds consensus recommendations by applying the consensus algorithm to the
set of developers’ interaction traces. The approach can recommend relevant file(s)-to-edit
to help developers, particularly newcomers, to complete change tasks that are similar to the
input tasks with minimal effort and time.

We evaluated our approach using a series of three evaluations: quantitative, qualitative, and
comparison. In the quantitative evaluation,wemeasured the accuracy of the recommendations
against ground truth. Measures showed that CITR can recommend accurate and relevant
file(s)-to-edit with average precision of 74%, recall of 68%, and F-measure of 68%.

In the qualitative evaluation,we carried out an observational controlled experiment tomea-
sure the extent to which recommendations could increase developers’ productivity. Results
demonstrated that CITR could increase developers’ productivity by helping them achieve a
high task success rate in less time and follow a more structured navigation behaviour.

Lastly, we compared our approach to a state-of-the-art approach, MI (Lee et al. 2014).
Results showed that CITR can achieve higher recommendation accuracy and relevancy than
that of MI with average F-measure value of 68% and 37% respectively.

We concluded that CITR can guide developers’ navigation path towards resolving tasks
and thus increase their productivity by recommending relevant file(s)-to-edit, and that the
consensus algorithm is an efficient tool to compute such recommendations.

In the future, we plan (1) to broaden the study by carrying it out on an industry-tailored
software system, on multiple client instances of the software, while involving real developers

123

Empirical Software Engineering (2024) 29:147 Page 43 of 46 147

in collecting their interactions with the system and inviting them to evaluate the tool; (2)
to perform the qualitative evaluation experiment on two sets of real-industry developers,
newcomers and experienced; (3) to involve a large number of developers completing a large
number of similar change tasks in order to investigate the results of the consensus algorithm
on a larger set of task-related interaction traces; (4) to investigate the possibility of optimizing
the quality of Mylyn collected events to reduce noise and atomising the pre-processing step;
(5) to enhance developers’ navigation experience by developing an IDE plug-in that can use
stored data to automatically generate recommendations and highlight the recommended files
in the package explorer without requiring developers to explicitly locate these files; (6) to
search and develop a ranking algorithm that can rank the recommended files according to
their relevance to the task at hand; and, (7) to apply our approach at the method level to
investigate whether the approach could recommend method(s)-to-edit.

Data Availability The datasets generated during and analysed for this study are available in the replication
package: https://www.ptidej.net/downloads/replications/emse22a/.

Declarations

Funding and–or Conflicts of Interests/Competing Interests. The authors declare that they have no known
competing interests or personal relationships that could have (appeared to) influenced the work reported in
this article.

References

Ailon N, Charikar M, Newman A (2008) Aggregating inconsistent information: Ranking and clustering. J
ACM 55(5). https://doi.org/10.1145/1411509.1411513

Ali A, Meilă M (2012) Experiments with kemeny ranking: What works when? Math Soc Sci 64(1):28–40.
https://doi.org/10.1016/j.mathsocsci.2011.08.008, computational Foundations of Social Choice

Amann S, Proksch S, Nadi S (2016) Feedbag: An interaction tracker for visual studio. In: 2016 IEEE 24th
international conference on program comprehension (ICPC), pp 1–https://doi.org/10.1109/ICPC.2016.
7503741

Avazpour I, Pitakrat T, Grunske L, Grundy J (2014) Dimensions and Metrics for Evaluating Recommenda-
tion Systems. In: Robillard MP, Maalej W, Walker RJ, Zimmermann T (eds) Recommendation systems
in software engineering, Springer Berlin Heidelberg, pp 245–273. https://doi.org/10.1007/978-3-642-
45135-5_10

Bao L, Xing Z, Xia X, Lo D, Li S (2017) Who will leave the company?: a large-scale industry study of
developer turnover by mining monthly work report. In: 2017 IEEE/ACM 14th international conference
on mining software repositories (MSR), IEEE, pp 170–181

Biegel B, Baltes S, Scarpellini I, Diehl S (2015) Code basket: Making developers’ mental model visible and
explorable. In: 2015 IEEE/ACM 2nd international workshop on context for software development, IEEE,
pp 20–24

Brancotte B, Yang B, Blin G, Cohen-Boulakia S, Denise A, Hamel S (2015) Rank aggregation with ties: Exper-
iments and analysis. Proc VLDB Endow 8(11):1202–1212. https://doi.org/10.14778/2809974.2809982

Chattopadhyay S, Nelson N, Gonzalez YR, Leon AA, Pandita R, Sarma A (2019) Latent patterns in activities:
A field study of how developers manage context. In: 2019 IEEE/ACM 41st international conference on
software engineering (ICSE), IEEE, pp 373–383

Cohen-Boulakia S, Denise A, Hamel S (2011) Using medians to generate consensus rankings for biological
data. In: Proceedings of the 23rd international conference on scientific and statistical database manage-
ment, Springer-Verlag, Berlin, Heidelberg, SSDBM’11, p 73–90

Critchlow DE (1985) Metric methods for analyzing partially ranked data, vol 34. Springer Science & Business
Media

CRM (2022) 17 crm statistics: Growth, revenue, adoption rates & more facts. https://crm.org/crmland/crm-
statistics

123

https://www.ptidej.net/downloads/replications/emse22a/
https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1016/j.mathsocsci.2011.08.008
https://doi.org/10.1109/ICPC.2016.7503741
https://doi.org/10.1109/ICPC.2016.7503741
https://doi.org/10.1007/978-3-642-45135-5_10
https://doi.org/10.1007/978-3-642-45135-5_10
https://doi.org/10.14778/2809974.2809982
https://crm.org/crmland/crm-statistics
https://crm.org/crmland/crm-statistics

 147 Page 44 of 46 Empirical Software Engineering (2024) 29:147

Cubranic D, Murphy G (2003) Hipikat: recommending pertinent software development artifacts. In: 25th
International conference on software engineering, 2003. Proceedings., pp 408–41. https://doi.org/10.
1109/ICSE.2003.1201219

DeLine R, Czerwinski M, Robertson G (2005) Easing program comprehension by sharing navigation data. In:
2005 IEEE symposium on visual languages and human-centric computing (VL/HCC’05), pp 241–24.
https://doi.org/10.1109/VLHCC.2005.32

Erlebacher A (1977) Design and analysis of experiments contrasting the within-and between-subjects manip-
ulation of the independent variable. Psychol Bull 84(2):21. https://doi.org/10.1037/0033-2909.84.2.212

Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E (2004) Comparing and aggregating rankings with ties.
In: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART symposium on principles of
database systems, Association for Computing Machinery, New York, NY, USA, PODS ’04, pp 47–
58,https://doi.org/10.1145/1055558.1055568

Fritz T, Shepherd DC, Kevic K, Snipes W, Bräunlich C (2014) Developers’ code context models for change
tasks. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software
engineering, Association for Computing Machinery, New York, NY, USA, FSE 2014, pp 7–18. https://
doi.org/10.1145/2635868.2635905

Hammouda I, Lundell B, Mikkonen T, Scacchi W (2012) Open Source Systems: Long-Term Sustainability.
Springer

Kemeny JG (1959) Mathematics without numbers. Daedalus 88(4):577–591
KerstenM,Murphy GC (2006) Using task context to improve programmer productivity. In: Proceedings of the

14th ACM SIGSOFT international symposium on foundations of software engineering, Association for
Computing Machinery, New York, NY, USA, SIGSOFT ’06/FSE-14, p 1–11. https://doi.org/10.1145/
1181775.1181777

Ko AJ, Myers BA, Coblenz MJ, Aung HH (2006) An exploratory study of how developers seek, relate, and
collect relevant information during software maintenance tasks. IEEE Trans Softw Eng 32(12):971–987.
https://doi.org/10.1109/TSE.2006.116

LaToza TD, Venolia G, DeLine R (2006) Maintaining mental models: A study of developer work habits. In:
Proceedings of the 28th international conference on software engineering, association for computing
machinery, New York, NY, USA, ICSE ’06, pp 492–50. https://doi.org/10.1145/1134285.1134355

Lee S, Kang S (2011) Clustering and recommending collections of code relevant to tasks. In: 2011 27th IEEE
international conference on software maintenance (ICSM), pp 536–53. https://doi.org/10.1109/ICSM.
2011.6080826

Lee S, Kang S (2013) Clustering navigation sequences to create contexts for guiding code navigation. J Syst
Softw 86(8):2154–2165. https://doi.org/10.1016/j.jss.2013.03.103

Lee S, Kang S, Kim S, Staats M (2014) The impact of view histories on edit recommendations. IEEE Trans
Softw Eng 41(3):314–330. https://doi.org/10.1109/TSE.2014.2362138

Majid I, Robillard MP (2005) Nacin: an eclipse plug-in for program navigation-based concern inference. In:
Proceedings of the 2005 OOPSLA workshop on Eclipse Technology eXchange, ETX 2005, San Diego,
California, USA, October 16-17, 2005, ACM, pp 70–7. https://doi.org/10.1145/1117696.1117711

Minelli R, Mocci A, LanzaM, Kobayashi T (2014) Quantifying program comprehension with interaction data.
In: 2014 14th International conference on quality software, pp 276–28. https://doi.org/10.1109/QSIC.
2014.11

Oracle (2022) 60 critical erp statistics: 2022market trends, data and analysis. https://www.netsuite.com/portal/
resource/articles/erp/erp-statistics.shtml

ParninC,Rugaber S (2009)Resumption strategies for interrupted programming tasks. In: 2009 IEEE17th inter-
national conference on program comprehension, pp 80–8. https://doi.org/10.1109/ICPC.2009.5090030

Pennock DM, Horvitz E, Giles CL (2000) Social choice theory and recommender systems: Analysis of the
axiomatic foundations of collaborative filtering. In: Proceedings of the seventeenth national conference
on artificial intelligence and twelfth conference on innovative applications of artificial intelligence, AAAI
Press, pp 729–734

Ramsauer R, Lohmann D, Mauerer W (2016) Observing custom software modifications: A quantitative
approach of tracking the evolution of patch stacks. In: Proceedings of the 12th international sympo-
sium on open collaboration, association for computing machinery, New York, NY, USA, OpenSym ’1.
https://doi.org/10.1145/2957792.2957810

Robbes R, Lanza M (2010) Improving code completion with program history. Autom Softw Eng 17(2):181–
212. https://doi.org/10.1007/s10515-010-0064-x

Robbes R, Pollet D, Lanza M (2010) Replaying ide interactions to evaluate and improve change prediction
approaches. 2010 7th IEEEworking conference onmining software repositories (MSR2010) pp 161–170.
https://doi.org/10.1109/MSR.2010.5463278

123

https://doi.org/10.1109/ICSE.2003.1201219
https://doi.org/10.1109/ICSE.2003.1201219
https://doi.org/10.1109/VLHCC.2005.32
https://doi.org/10.1037/0033-2909.84.2.212
https://doi.org/10.1145/1055558.1055568
https://doi.org/10.1145/2635868.2635905
https://doi.org/10.1145/2635868.2635905
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1109/ICSM.2011.6080826
https://doi.org/10.1109/ICSM.2011.6080826
https://doi.org/10.1016/j.jss.2013.03.103
https://doi.org/10.1109/TSE.2014.2362138
https://doi.org/10.1145/1117696.1117711
https://doi.org/10.1109/QSIC.2014.11
https://doi.org/10.1109/QSIC.2014.11
https://www.netsuite.com/portal/resource/articles/erp/erp-statistics.shtml
https://www.netsuite.com/portal/resource/articles/erp/erp-statistics.shtml
https://doi.org/10.1109/ICPC.2009.5090030
https://doi.org/10.1145/2957792.2957810
https://doi.org/10.1007/s10515-010-0064-x
https://doi.org/10.1109/MSR.2010.5463278

Empirical Software Engineering (2024) 29:147 Page 45 of 46 147

Robillard M, Coelho W, Murphy G (2004) How effective developers investigate source code: an exploratory
study. IEEE Trans Softw Eng 30(12):889–90. https://doi.org/10.1109/TSE.2004.101

RobillardMP (2008) Topology analysis of software dependencies. ACMTrans Softw EngMethodol (TOSEM)
17(4):1–36

Robillard MP, Dagenais B (2010) Recommending change clusters to support software investigation: an empir-
ical study. J Softw Maint Evol Res Pract 22(3):143–164. https://doi.org/10.1002/smr.413

Rothlisberger D, Nierstrasz O, Ducasse S, Pollet D, Robbes R (2009) Supporting task-oriented navigation in
ideswith configurable heatmaps. In: 2009 IEEE17th international conferenceonprogramcomprehension,
pp 253–257,https://doi.org/10.1109/ICPC.2009.5090052

Sahm A, Maalej W (2010) Switch! recommending artifacts needed next based on personal and shared context.
In: Engels G, Luckey M, Pretschner A, Reussner RH (eds) Software Engineering 2010 - Workshop-
band (inkl.Doktorandensymposium), Fachtagung desGI-Fachbereichs Softwaretechnik, 22.-26.02.2010,
Paderborn, GI, LNI, vol P-160, pp 473–484

Sanchez H, Robbes R, Gonzalez VM (2015) An empirical study of work fragmentation in software evolution
tasks. In: 2015 IEEE 22nd international conference on software analysis, evolution, and reengineering
(SANER), pp 251–26.https://doi.org/10.1109/SANER.2015.7081835

Sillito J, Murphy GC, De Volder K (2006) Questions programmers ask during software evolution tasks. In:
Proceedings of the 14thACMSIGSOFT international symposiumon foundations of software engineering,
Association for Computing Machinery, pp 23–3. https://doi.org/10.1145/1181775.1181779

Singer J, Elves R, Storey MA (2005) Navtracks: supporting navigation in software maintenance. In: 21st
IEEE international conference on software maintenance (ICSM’05), pp 325–33. https://doi.org/10.1109/
ICSM.2005.66

Soh Z, Khomh F, Guéhéneuc YG, Antoniol G (2013a) Towards understanding how developers spend their
effort during maintenance activities. In: 2013 20th Working conference on reverse engineering (WCRE),
pp 152–16. https://doi.org/10.1109/WCRE.2013.6671290

Soh Z, Khomh F, Guéhéneuc YG, Antoniol G, Adams B (2013b) On the effect of program exploration on
maintenance tasks. In: 2013 20th Working conference on reverse engineering (WCRE), pp 391–400.
https://doi.org/10.1109/WCRE.2013.6671314

Soh Z, Khomh F, Guéhéneuc YG, Antoniol G (2018) Noise in mylyn interaction traces and its impact on
developers and recommendation systems. Empir Softw Eng 23(2):645–692. https://doi.org/10.1007/
s10664-017-9529-x

Starke J, Luce C, Sillito J (2009) Searching and skimming: An exploratory study. In: 2009 IEEE international
conference on software maintenance, pp 157–16. https://doi.org/10.1109/ICSM.2009.5306335

Teitelman W, Masinter L (1981) The interlisp programming environment. Computer 14(4):25–3. https://doi.
org/10.1109/C-M.1981.220410

Wan Z, Murphy GC, Xia X (2020) Predicting code context models for software development tasks. In: 2020
35th IEEE/ACM international conference on automated software engineering (ASE), IEEE, pp 809–820

Wang J, Peng X, Xing Z, Zhao W (2011) An exploratory study of feature location process: Distinct phases,
recurring patterns, and elementary actions. In: 2011 27th IEEE international conference on software
maintenance (ICSM), pp 213–22https://doi.org/10.1109/ICSM.2011.6080788

Ying A, Murphy G, Ng R, Chu-Carroll M (2004) Predicting source code changes by mining change history.
IEEE Trans Softw Eng 30(9):574–58. https://doi.org/10.1109/TSE.2004.52

Ying AT, Robillard MP (2011) The influence of the task on programmer behaviour. In: 2011 IEEE 19th
international conference on program comprehension, pp 31–4. https://doi.org/10.1109/ICPC.2011.35

Zimmermann T, Weibgerber P, Diehl S, Zeller A (2004) Mining version histories to guide software changes.
In: Proceedings. 26th international conference on software engineering, pp 563–57. https://doi.org/10.
1109/ICSE.2004.1317478

Zou L, Godfrey MW, Hassan AE (2007) Detecting interaction coupling from task interaction histories. In:
15th IEEE international conference on program comprehension (ICPC ’07), pp 135–14. https://doi.org/
10.1109/ICPC.2007.18

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1109/TSE.2004.101
https://doi.org/10.1002/smr.413
https://doi.org/10.1109/ICPC.2009.5090052
https://doi.org/10.1109/SANER.2015.7081835
https://doi.org/10.1145/1181775.1181779
https://doi.org/10.1109/ICSM.2005.66
https://doi.org/10.1109/ICSM.2005.66
https://doi.org/10.1109/WCRE.2013.6671290
https://doi.org/10.1109/WCRE.2013.6671314
https://doi.org/10.1007/s10664-017-9529-x
https://doi.org/10.1007/s10664-017-9529-x
https://doi.org/10.1109/ICSM.2009.5306335
https://doi.org/10.1109/C-M.1981.220410
https://doi.org/10.1109/C-M.1981.220410
https://doi.org/10.1109/ICSM.2011.6080788
https://doi.org/10.1109/TSE.2004.52
https://doi.org/10.1109/ICPC.2011.35
https://doi.org/10.1109/ICSE.2004.1317478
https://doi.org/10.1109/ICSE.2004.1317478
https://doi.org/10.1109/ICPC.2007.18
https://doi.org/10.1109/ICPC.2007.18

 147 Page 46 of 46 Empirical Software Engineering (2024) 29:147

Authors and Affiliations

Layan Etaiwi1 · Pascal Sager2,3 · Yann-Gaël Guéhéneuc4 · Sylvie Hamel5

B Layan Etaiwi
mashael.etaiwi@polymtl.ca

Pascal Sager
pascaljosef.sager@uzh.ch ; sage@zhaw.ch

Yann-Gaël Guéhéneuc
yann-gael.gueheneuc@concordia.ca

Sylvie Hamel
hamelsyl@iro.umontreal.ca

1 Polytechnique Montréal, Montréal, Canada
2 University of Zurich, Zurich, Switzerland
3 Zurich University of Applied Sciences, Winterthur, Switzerland
4 Concordia University, Montréal, Canada
5 Université de Montréal, Montréal, Canada

123

http://orcid.org/0000-0001-9250-7578

	Consensus task interaction trace recommender to guide developers' software navigation
	Abstract
	1 Introduction
	2 Motivating use case
	3 Approach
	4 Related work
	4.1 Use of interaction traces for software engineering activities
	4.2 Recommendation systems
	4.3 Interaction traces based recommendation systems
	4.4 Studies of developer activities and behaviour

	5 Background on the consensus algorithms
	5.1 Overview of the consensus algorithms
	5.2 Measures
	5.3 Consensus algorithms

	6 Study setup
	6.1 Subject system
	6.2 Change tasks
	6.3 Participants
	6.4 Events collection tools
	6.5 Events collection
	6.6 Events pre-processing
	6.7 Task-related interaction traces formation and generating recommendations

	7 Evaluations
	7.1 RQ1: To what degree does CITR recommend relevant files to given change tasks?
	7.2 RQ2: Given a change task, can CITR help guide developers' navigation paths to relevant file(s)-to-edit and increase their productivity?
	7.3 RQ3: How does CITR compare to MI (Mining Programmer Interaction Histories) lee2014impact in recommending relevant file(s)-to-edit for specific change tasks?

	8 Results and discussions
	8.1 RQ1: To what degree does CITR recommend relevant files to given change tasks?
	8.2 RQ2: Given a change task, can CITR help guide developers' navigation paths to relevant file(s)-to-edit and increase their productivity?
	8.3 RQ3: How does CITR compare to MI (Mining Programmer Interaction Histories) lee2014impact in recommending relevant file(s)-to-edit for specific change tasks?

	9 Threats to validity
	10 Conclusion
	References

