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Abstract—The video game industry is one of the most innova-
tive, competitive, and rapidly growing industries. The industry’s
successes along with the increasing gamers’ expectations result
in always larger and more complex games. These games thus
must be developed with game engines, which have become cor-
respondingly more sophisticated. Today, game engine developers
find game engine development challenging. To support the process
of creating and maintaining game engines, we propose COSA,
an approach based on applying a consensus algorithm to a set of
game engine architectures. Our approach generates a model that
suggests the most commonly used subsystems in game-engine
architectures, ranked by their degree of coupling. The model
can be used by developers as a starting point when deciding
what subsystems to include when building a game engine and
points out the most coupled subsystems, which can play an
important role towards higher subsystems’ maintainability and
reusability. We evaluate the approach by comparing the results
of our approach against predefined ground truth data. The result
of our approach matches the subsystems defined in the ground
truth data and it shows that the most coupled subsystems are
core, low-level rendering, third-party SDKs, and world editor.
Additionally, when comparing game engine architectures, we
observe that most architectures are composed of nearly the same
set of subsystems. Our approach COSA thus helps game-engine
developers fairly compare their engines and focus their attention
on the “important” subsystems.

Index Terms—Consensus Algorithms, Rankings, Game Engine,
Game Engine Architecture, Game Engine Development.

I. INTRODUCTION

The history of video games began around six decades ago
with computer scientists developing Spacewar in 1961 [15].
Since then, the video game industry rapidly grew and has
become one of the most profitable in the market. By the end
of 2022, the global gaming industry will reach over 3 billion
people and generate over $196.8 billion in revenue [23].

Video game development was traditionally done by a small
development team writing code from scratch with rarely any
reusable game subsystems. However, as the industry experi-
enced fast growth and its environment became highly competi-
tive, users’ expectations have grown, calling for advancements
in game development techniques. As a result, the process
of video game development became more complex and the
development teams became much larger and more specialized.
These changes have created the need for a framework that
can facilitate and shorten the development time by providing
generic, reliable and reusable software subsystems such as a

rendering engine, physics engine, audio system, etc., so the
developers could focus their effort on developing the game
mechanics, which are the game’s logic. Today, such a frame-
work is known as a game engine. Examples of popular game
engines are Unity engine1, Unreal engine2, and CryENGINE3.
Most game engines are written primarily in C++ programming
language [6], however the internal implementation varies from
engine to engine.

Game engine architectures differ from other software sys-
tems architectures because their subsystems are structured as a
software stack of multi-layers of abstractions increasing layer
by layer until the game mechanics are described [20]. The
importance of such an architecture lies behind the necessity
to manage the constantly changing requirements of games,
recurrent releases, complexity of game engines and their
libraries and APIs [29].

Nevertheless, in game engines, as in other types of systems,
developers do not always create an architectural model before
coding, so architectural decisions are only represented in the
code and not readily available for analysis and comparison.
Such comparisons could be useful for identifying commonal-
ities and suggesting ways to improve existing engines [7].

In this study, we aim to reach three primary objectives:
determining architectural commonalities between game en-
gines, creating a model that presents a consensus of funda-
mental subsystems, and identifying the degree of coupling
of these subsystems. To achieve these objectives, we perform
architectural recovery on a set of selected open-source game
engines. Recovered architectures help us identify subsystems
that are part of each engine. We measure the degree of
coupling of subsystems in each architecture by generating
an include graph, and calculating coupling between objects
(CBO) metric. Finally, we apply a consensus algorithm to
the set of subsystems in the recovered architectures to obtain
a model that provides a consensus fundamental subsystems
ranked by their degree of coupling. We evaluate the model
by comparing it to predefined ground truth data. This model
can be used by developers to decide what subsystems they
will develop when building a game engine, as well as the

1www.unity.com
2www.unrealengine.com
3www.cryengine.com



most coupled subsystems, so they can focus their programming
efforts on minimising coupling for better maintainability and
reusability. Results suggest that all identified subsystems are
fundamental and should be taken into account when designing
an engine architecture. Moreover, results discover that engine
architectures contain similar subsystems. Lastly, they show
that the most coupled subsystems are core systems, low-level
rendering, third-party SDKs and world editor.

The remainder of the paper is organised as follows: Back-
ground and related studies are discussed in the next Section.
The proposed approach of this study is explained in Section
III. Validation of the approach is presented in Section IV. In
Section V, results are shown and discussed. In Section VI we
present possible threats to validity. Finally, conclusions are
drawn in the last section.

II. BACKGROUND AND RELATED WORK

In this section, we provide background information on
architecture recovery, game engine architecture and consensus
algorithms as well as summarise previous related works.

A. Software architecture recovery

Software architecture recovery is the extraction of high-level
software architecture information from source code entities
such as files and classes [32]. Software architecture consists
of “the structure of components in a program or system, their
interrelationships, and the principles and guides that control
the design and evolution in time” [27].

In the process of architecture recovery, we “group
implementation-level entities (e.g., files, classes, or functions)
into clusters, where each cluster represents a component” [16].
Some authors refer to these components as subsystems [8],
which is the naming we chose for this work.

Hierarchical, density-based and distribution-based cluster-
ing are popular approaches [32], applied in automatic or
semiautomatic fashion. Entities can be clustered based on
similarity regarding different attributes, such as number of
references to variables, types or other entities [30], textual
content [25], naming conventions or number of dependencies
[11].

In this paper, we cluster the files into subsystems using their
naming conventions, information provided by code comments,
and documentation, as described in Sections III and IV.

While architecture recovery is usually mentioned in the con-
text of understanding legacy enterprise systems, researchers
have also applied it to a range of popular open-source code-
bases such as the Linux kernel [8], the Chromium browser
[26], the Bash Unix Shell and the CVS version control system
[30]. In this work, we do architecture recovery on open-source
game engines.

Researchers and developers use architecture recovery tech-
niques to retrieve lost architectural knowledge that guided the
development of a software system in the past [12]. They can
then use this knowledge to plan the system’s evolution and
ease its program maintainability, understanding and knowledge
transfer [31, 22].

B. Game Engine Architecture

The game engine architecture is the implementation and
organisational structure of subsystems. This architecture varies
from engine to engine, and there is currently no widely used
standardised game engine architecture. However, we show
in Figure 1 a high-level architecture created by Gregory. It
lays out the runtime subsystems that make up a typical game
engine into multiple layers of abstraction. The bottom layer
interacts directly with the hardware and operating system.
Starting in the resources subsystem and going up, all generic
and re-usable game logic is represented, such as physics
simulation, graphical rendering and audio playback. Finally,
on top, the game-specific layer represents a specific game
logic with limited reusability beyond the scope of the game
being developed, such as in-game camera systems, artificial
intelligence, weapon systems, etc.

Game-Specific Subsystems

Hardware, Drivers, Operating System

Third-Party SDKs

Platform Independence Layer

Core Systems

Resources

Low-Level Renderer Profiling & Debugging Collision & Physics HID

Scene Graph/ Culling Optimization

Visual Effects
Skeletal Animation AudioOnline

Multiplayer

Front End Gameplay Foundations

Fig. 1. Summary of a High-Level Game Engine Architecture Adapted from
Gregory [17].

There are few studies on game engine architecture. While
there are books on this subject [17, 14, 19], often these
publications tend to only briefly describe the high-level ar-
chitecture before plunging straight down to the lowest level
and describing how the individual components of the engine
are implemented [3]. Furthermore, while such literature is an
excellent source of information for writing an engine, it is
of little help when the requirements differ from the solution
described. Similarly, according to [21]: “The current literature
deals with the engine components, such as the behaviour
specification, the scene render or the networking. Nevertheless,
the game engine architecture connecting all these is a subject
that has been barely covered.” Seeking to cover this gap, we
aim to provide more insight into the importance of high-level
game engine subsystems through our study.

C. Consensus Algorithms in a Nutshell

A consensus ranking is defined as aggregating a set of
N different ranked lists of n elements into one ranking that
orders the n elements closest to all of the N rankings within a
specified distance [2]. Rankings can be incomplete: not all the
n elements are ordered in every ranking or strictly ordered;
some elements are ranked at the same position, i.e., tied.



There are different distance measures, however many studies
[5, 4] proposed using the generalized Kendall-τ distance [18]
when measuring the distance between incomplete and rankings
with ties. The generalized Kendall-τ distance, G, between two
rankings r and s is computed as follows:

G(r, s) = #{(i, j) : i < j∧
((r[i] < r[j]∧s[i] > s[j]) ∨ (r[i] > r[j] ∧ s[i] < s[j]) ∨ (1)
(r[i] ̸= r[j]∧s[i] = s[j]) ∨ (r[i] = r[j] ∧ s[i] ̸= s[j]))} (2)

That translates as the sum of the number of times elements
i and j are ordered differently in the two rankings (1), or (2)
the number of times the two elements are tied (in the same
bucket) in one ranking, and not tied in the other.

The generalized Kemeny score K is defined as the sum
of the generalized Kendall-τ distance between a ranking and
every ranking in the input set R. It is computed as follows:

K(r,R) =
∑
s∈R

G(r, s).

An optimal consensus ranking r∗, for a set of rankings R
is then:

∀r ∈ Rn : K(r∗,R) ≤ K(r,R).

Anonymous et al. [4] studied and extensively compared
14 consensus algorithms on small and large datasets, both
real and synthetic. Findings of their experiments showed that
BioConcert algorithm [5], on both real and synthetic datasets,
outperforms the other algorithms and produces results of the
greatest quality. The KwikSort algorithm [1] placed in second
place after BioConcert in terms of performance, especially
when the dataset is exceedingly vast. The BioConcert and
KwikSort algorithms produce the highest-quality outcomes,
we decide to use them to generate the results of our study
(see Sections III-D, IV-D) and compare their results.

D. Consensus Algorithm Applications

Querying for genes possibly linked to a certain disease,
for example, could yield hundreds of results. This resulted
in the need for a ranking solution that is able to order
the results in a consensus fashion to help scientists focus
their attention on other tasks. This problem led to numerous
research works studying the consensus algorithms in the field
of bioinformatics [5]. Nonetheless, it has been applied in other
domains. For example, in the domain of artificial intelligence,
researchers used rank aggregation to aggregate multiple users’
preferences into one consensus ranking to help predict future
preferences [24]. Similarly, in the domain of databases, rank
aggregation has been used to eliminate noise and inconsisten-
cies from data sets by aggregating contradictory clusterings
from existing data sets into one consensus clustering [1].
In addition, different rank aggregation techniques have been
studied in the area of Web engines querying to combine a set
of search results into one ranking [13].

III. APPROACH

Figure 2 shows an overview of our approach, COSA (COn-
sensus Software Architecture). The approach is broken down
into several steps: system selection, subsystem identification
and detection (architecture recovery), subsystem coupling cal-
culation and ranking, and finally consensus algorithm applica-
tion to obtain a consensus of architecture subsystems ranked
based on their degree of coupling.

Select game
engines to

analyse

Generate
include graph

Order subsystems
by sum of includes/

includedBy

Run consensus
algorithm

Select
subsystems to

analyse

Identify
subsystems in
game engines

GitHub
Repositories Official docs Support forums

Game engines
files clustered
by subsystem

stores

uses

uses

stores

Ordered vectors
of subsystems

Game Engine
Architecture

(Gregory, 2018)

uses uses uses

Fig. 2. A Summary of the Steps in the Proposed Approach

A. System Selection
In the first step of our approach, we search and select

systems that can be studied. To be able to find systems that
serve the purpose of the study and help apply the approach
successfully, we establish a set of adequate selection criteria.
Establishing criteria is different from system to system, but in
this study exclusively we set criteria for game engine selection.

We define the following criteria for selecting game engines:
• open source engines, • engines written in C++, • general-
purpose engines, • engine repositories with the highest sum
of forks, and stars and • unarchived repositories.

We decided to limit our search to engines with C++ as
their primary programming language since C++ is the most
widely used language for game engine development due to
its performance and ability to reach low-level hardware [6].
In addition, we focused on general-purpose game engines as
they target a broad range of game genres and therefore provide
an overview of the features needed to make any game.

B. Subsystem Identification and Detection
In this step of the approach, we begin by defining ground

truth data, which consists of a collection of basic subsystems
that exist in any engine architecture. The ground truth data will
be used later to validate the result of applying the consensus
algorithm (Section V). Then, we perform system architecture
recovery by determining what subsystems compose the archi-
tecture of the selected system. We achieve that by analysing
each system repository’s directories and files manually and
clustering them according to the subsystems identified in the
ground truth data.



C. Subsystem Coupling Degree Measurement

There are several metrics that can be used to measure the
quality of a software system, and hence taken into considera-
tion when developing the software, such as cohesion, inheri-
tance, lines of codes, complexity, etc. However, in this work,
besides finding the most fundamental subsystems to include
in any system architecture, we opt for finding the degree
of coupling of each subsystem. The underlying reason for
prioritizing coupling over other metrics is that highly coupled
software systems are difficult to maintain, understand, test, or
even reuse. Making a change to such a system requires more
effort and time due to the increased dependency between its
classes, especially when new releases are frequently expected,
as they are in the video game industry.

Coupling was first introduced by Stevens et al. and defined
it as “the measure of the strength of association established
by a connection from one module to another” [28]. In object-
oriented programming, coupling is described as the depen-
dency of one class on other classes. There are different
measures that measure the degree of coupling between classes.
Among these measures, coupling Between Objects (CBO) is
the only measure that is a class-level measure, considers both
import and export coupling, and determines the strength of
coupling by the frequency of connections between classes [9].
CBO is a count of the number of classes that are coupled to
a particular class [10]. Class A is coupled to class B if it
references B and–or is being referenced by B.

To measure the degree of coupling of each subsystem in
the recovered system architectures, we generate an include
graph that shows the include relationships between files within
each subsystem. We then calculate the degree of coupling
by summing the number of include statements in each file
and the number of times each file is included in other files
(includedBy). Finally, we rank each architecture subsystem
for each system based on their degree of coupling.

D. Consensus Algorithm Application

The final step of the approach is applying the selected
consensus algorithms. As discussed in Subsection II-C, we
chose to apply the BioConcert and Kwiksort algorithms. The
algorithms take as input the output from the previous step,
which is a set of architectures of subsystems ranked by
their degree of coupling. The algorithms should output one
consensus architecture of subsystems.

E. Implementation

We implemented our COSA approach as a tool that can be
applied to any set of subsystems and metrics. It is an open-
source implementation available on GitHub4

IV. COSA ON GAME ENGINES

We now apply our approach COSA to game engines to iden-
tify their architectural commonalities and differences. Thus,
we want to demonstrate which subsystems are present in all

4URL removed because of double-blind review.

game engine architectures, which are only present in some
architectures, how tightly the subsystems are coupled, and
provide a consensus architecture of fundamental subsystems.
We hence can help game engine developers in designing
their engine architecture and focusing their efforts on
developing loosely coupled subsystems.

A. Game Engine Selection

Considering that most open-source game engine repositories
are stored and shared on GitHub, we chose it as our repository
database. We used GitHub’s search function to search and
filter game engines that meet our predefined selection criteria
in Subsection III-A. From the result of our search query, we
selected the top 10 engines with the highest sum of forks and
stars. Names of the selected engines are listed in Table I.

Engine Name Forks + Stars First Commit Year

UnrealEngine 64100 2014
godot 59200 2013
cocos2d-x 23300 2010
o3de 6400 2021
Urho3D 4956 2011
gameplay 4900 2011
panda3d 4100 2000
olcPixelGameEngine 3963 2018
Piccolo 3892 2022
FlaxEngine 3613 2020

TABLE I
SELECTED GAME ENGINES ALONG WITH THE SUM OF THEIR GITHUB

REPOSITORIES FORKS AND STARS.

B. Game Engine Subsystem Identification and Detection

We used the “Runtime Engine Architecture” proposed by
Gregory for defining the ground truth data. We chose Gre-
gory’s book since it is well-known among industry profession-
als and it aims to provide an in-depth discussion of the major
subsystems that make up a standard game engine [17]. Besides
reviewing game development and game engine foundational
concepts, the author drills down into each game engine subsys-
tem and discusses implementation details, performance issues
and how the structure of these subsystems in the code impact
the player and developer experiences.

Gregory structures the engine architecture into 15 layered
subsystems. While he divides each subsystem into a set of
tools and smaller components, we choose to consider only
the subsystems in the ground truth data. Although Gregory
does not include the world editor (EDI) in the architecture, he
emphasizes the importance of including EDI when building a
game engine, thus we add EDI to the ground truth data. Table
II lists the 16 defined subsystems.

During the analysis process of directories and files con-
tained in each engine repository for subsystem detection,
we eliminated files that are not written in C++ or do not
contain functionalities related to any subsystems. On the other
hand, files containing subsystems-related functionalities are
clustered to their corresponding subsystems. To determine



Abbrev. Name

AUD Audio
COR Core Systems
DEB Profiling and Debugging
EDI World Editor
FES Front End
GMP Gameplay Foundations
HID Human Interface Devices
LLR Low-Level Renderer
OMP Online Multiplayer
PHY Collision and Physics
PLA Platform Independence Layer
RES Resources (Game Assets)
SDK Third-party SDKs
SGC Scene graph/culling optimizations
SKA Skeletal Animation
VFX Visual Effects

TABLE II
GROUND TRUTH DATA OF SUBSYSTEMS

whether a file contains functionalities related to a specific
subsystem, we examined the followings:

• Directories, files, classes and methods naming. For in-
stance, if a directory is named Audio, this indicates that
the contents included therein are a part of the AUD
subsystem.

• Source code comments that describe the semantics of a
file, class or method.

• Official engine’s documentation, wiki and/or support fo-
rums. Documentation can provide information on how
an engine is structured, what subsystems are included,
description of directories, etc.

When a file contains functionalities that are related to more
than one subsystem, it is clustered into just one of those
subsystems. We choose the most corresponding subsystem
based on the engine documentation and authors’ professional
experiences.

We also identified several files that belong to subsystems
that do not exist in the ground truth data. In these cases, we
clustered the files with the most corresponding subsystems,
even when a direct relationship could not always be found.
If none of the subsystems specified in the ground truth data
corresponds to the functions provided in the file, we exclude
the file.

Lastly, we clustered together any 3rd-party libraries under
the “ 3rd-party SDKs” subsystem. Even while these libraries
might contain some functionalities that serve a less generic
subsystems, they are libraries that are not developed and
maintained by the game engine developers. For example, the
Piccolo engine contains no audio subsystem, but it includes
stb libraries, which contain audio decoding and synthesizing
functionalities. These functionalities, however, are not used by
Piccolo, even though they can be found on Piccolo’s codebase.
Therefore, the stb file in Piccolo was clustered into the SDK
subsystem, and not the AUD subsystem. The clustering of
engines files into subsystems is available in a repository5

5https://zenodo.org/record/7239232#.Y1RdfdLMIUE

C. Game Engine Subsystem Coupling Degree Measurement

We generated an include graph for each subsystem in all
engine architectures by using a script created by Francis
Irving6, which generates a Graphviz graph from the set of
clustered files from the previous step. We then created a script
whose pseudo-code is depicted in Listing 1. The idea is, for
each engine, to select files related to each subsystem, compute
coupling between objects (CBO) for the subsystem, add the
subsystems to a hashmap with the name of the subsystem as
the key and CBO as the value, and order the hashmap by value.
The result is a set of game engine architecture of subsystems
ordered by their degree of coupling, presented in Figure 3

# each engine will do a call to this
def get_vector(engine_files, subsystems):

hashmap = {}
for subsystem in subsystems:

files_filtered = filter_files(
engine_files, subsystem)

calculated_metric = calculate_metric(
files_filtered)

hashmap[subsystem] = calculated_metric
return sort_hashmap_by_value(hashmap, "

descending")

Listing 1. Pseudo-code of Computing Coupling Between Objects (CBO)

Tightly Coupled Loosly Coupled

[COR],[SDK],[EDI],[FES],[LLR],[SKA],[VFX],[RES],[OMP],[AUD],[DEB],[PLA],[GMP],[PHY],[HID],[SGC]UnrealEngine

[SDK],[COR],[EDI],[RES],[FES],[PLA],[PHY],[LLR],[SGC],[VFX],[AUD],[GMP],[OMP],[SKA],[DEB],[HID]godot

       [COR],[LLR],[PLA],[SDK],[GMP],[EDI],[RES],[PHY],[VFX],[DEB],[SKA],[AUD],[HID],[OMP],[FES]FlaxEngine

       [COR],[RES],[LLR],[PHY],[EDI],[SGC],[VFX],[OMP],[SKA],[HID],[PLA],[FES],[GMP],[AUD],[DEB]panda3d

       [LLR],[OMP],[AUD],[PHY],[FES]olcPixelGameEngine

       [VFX],[COR],[EDI],[LLR],[GMP],[PLA],[FES],[AUD],[PHY],[OMP],[RES],[SKA]cocos2d-x

       [EDI],[SKA],[FES],[GMP],[LLR],[COR],[RES],[AUD],[DEB],[OMP],[PHY],[HID],[PLA],[SGC],[SDK]o3de

       [SDK],[LLR],[COR],[GMP],[FES],[PHY],[SGC],[AUD],[OMP],[HID],[SKA],[RES]Urho3D

       [GMP],[RES],[COR],[SKA],[HID],[LLR],[PLA],[PHY],[FES],[SGC],[AUD],[VFX],[DEB]gameplay

       [SDK],[COR],[LLR],[RES],[EDI],[PHY],[GMP],[SKA],[HID],[PLA],[FES],[VFX]Piccolo

Fig. 3. Game Engine Architectures of Subsystems Ordered by Coupling
Degree

D. Consensus Algorithm Application

We observe that not every engine includes all 16 identified
subsystems, which in turn resulted in generating incomplete
rankings; not all the elements exist in every ranking. To
deal with incomplete rankings when applying consensus al-
gorithms, works proposed two normalization techniques [4].
Projection technique; keeps in each ranking only the common

6www.flourish.org/cinclude2dot/

https://zenodo.org/record/7239232#.Y1RdfdLMIUE


elements that exist in all rankings, and unification technique;
adds missing elements from each ranking at the end of the
ranking in one bucket. We do not use the projection technique
as it leads to the removal of some subsystems. We thus apply
the unification technique to complete the rankings, which adds
a bucket to the end of the rankings with missing elements.
For example, completing the ranking of Piccolo engine, adds
a bucket with the missing subsystems as follows:

Piccolo = [[SDK], [COR], [LLR], [RES], [EDI],
[PHY ], [GMP ], [SKA], [HID], [PLA],
[FES], [V FX], [SGC,AUD,OMP,DEB]]

After completing the rankings, we apply the BioConcert and
Kwiksort algorithms to the set of complete rankings. While
results from both algorithms were very similar, the Kwiksort
algorithm generated a result with a smaller generalized Ke-
meny score. Given that an optimal consensus ranking is the
one with the smallest possible generalized Kemeny score, we
adopt the result of the Kwiksort algorithm as our COSA for
game engines.

V. RESULTS AND DISCUSSION

In this Section, we present and discuss the result of applying
the consensus algorithm to a set of subsystems of 10 game
engine architectures that are ranked according to their coupling
degree (tight to loose). The discussion revolves around two
axes; first, we discuss commonalities between architectures
and the most essential subsystems; second, we explore the
most coupled subsystems and the underlying cause for their
tight coupling.

A. Commonalities and Consensus Architecture of Subsystems

When comparing how similar game engine architectures
are in terms of subsystems (refer to Figure 3), evidently
most engine architectures, excluding olcPixelGameEngine, are
composed of nearly the same subsystems. All subsystems
exist in two engines, fifteen appeared in three engines, while
twelve of the subsystems are part of the remaining four engine
architectures. This confirms the success of our architecture
recovery method (Subsection IV-B) and that we were able to
identify 80% of the subsystems in all architectures.

According to Gregory, while details of architectures and
implementation differ from engine to engine, all game engines
must eventually include a set of main subsystems, such as
rendering engine, physics engine, audio system, etc [17]. Thus,
this is an evident explanation for the commonality in engine
architectures.

OlcPixelGameEngine, on the other hand, contains only five
subsystems. The absence of more major subsystems occurs
because olcPixelGameEngine is not a complete engine since it
was developed by the YouTube channel OneLoneCoder for the
purpose of teaching game engine programming. From the top
10 selected open-source game engines, this is the only project
that will not be developed further into a complete engine.

Figure 4 presents the result of applying the Kwiksort algo-
rithm; a fundamental set of game engine subsystems ordered

in a consensus fashion in accordance with their degree of
coupling. Comparing the result of applying the consensus
algorithm to the ground truth data, the consensus result identi-
fied all 16 subsystems as essential subsystems, and developers
should therefore consider them in the architecture design when
developing a modern game engine. In light of the fact that the
majority of the subsystems were shared by the majority of
the engine architectures, this not only confirms the validity
of the consensus architecture of subsystems, but also ensures
the importance of each subsystem as it plays a distinct role in
the architecture. Hence, the proposed approach, COSA, ful-
fills our objectives of determining architectural commonalities
between game engines and providing engine developers with
a consensus architecture of a set of subsystems.

Tightly Coupled Loosly Coupled

  [COR], [LLR], [SDK], [EDI], [GMP], [RES], [PHY], [SKA], [PLA], [FES], [VFX], [AUD], [OMP], [DEB], [HID], [SGC]

Fig. 4. The Consensus Result of Applying the Kwiksort Algorithm

As mentioned in Subsection IV-B, we detected files that
belong to unidentified subsystems in the ground truth data.
A list of the discovered subsystems, their locations (game
engines), and a relevant subsystem from the ground truth
data are described in Table III. We conclude that Gregory’s
engine architecture is not inclusive, and it can be expanded to
comprise more subsystems provided by modern game engines.
In spite of the discovery of new subsystems, these subsystems
can not be regarded as essential since they are found in
relatively few engines.

B. Degree of Coupling

The result of applying the consensus algorithm presents a
consensus of the most coupled subsystems across all game
engine architectures (Figure 4). The four most coupled subsys-
tems are core systems, low-level renderer, 3rd-party SDKs, and
world editor. We now discuss the underlying reasons behind
the tight coupling and draw examples from the engines’ files.

a) Core Systems and 3rd-Party SDKs: As described by
Gregory, these subsystems are responsible for low-level opera-
tions such as memory allocation, file I/O, system calls, as well
as communication with graphic and audio APIs. Therefore,
they serve as support for all other high-level subsystems such
as audio, low-level renderer and visual effects. This, in turn,
means that files belonging to this subsystem are included by
many other files. In Unreal Engine, for example, the most
coupled core system file is CoreMinimal.h, and it is included
by 14051 files while including only 151 files.

b) Low-Level Renderer: It came as no surprise to us that
the renderer subsystem is identified as one of the most coupled.
It is responsible for producing 2D or 3D animated graphics
we see on screen in all games. From the game objects to the
UI of the world editor to everything needs to be drawn and
continuously updated.



Discovered Subsystems Game Engines Relevant
Subsystem
from Ground
Truth

Code editor, Multi-user
synchronization, Project creation
and “cooking”, CLI

UnrealEngine,
o3de, panda3d

EDI

Cache, source control UnrealEngine RES
Cvars, graphs (data structure),
Video subtitling and timecoding,
Analytics, Media streaming

FlaxEngine,
godot, o3de,
panda3d,
UnrealEngine

COR

Code hot reloading, visual script-
ing, assembler/compiler

FlaxEngine,
godot,
UnrealEngine

GMP

Virtual production (video post-
production)

UnrealEngine VFX

Screenshot capture FlaxEngine LLR
Foliage simulation FlaxEngine, Un-

realEngine
PHY

VR, AR, XR godot,
UnrealEngine

Advertisement UnrealEngine
Cryptography UnrealEngine,

FlaxEngine
Database UnrealEngine,

Urho3d, o3de
Virtualization UnrealEngine
Cloud services integration o3de

TABLE III
NEWLY DISCOVERED SUBSYSTEMS

c) World Editor: We observed that the editor has a
high degree of coupling because it provides a visual in-
terface to many other subsystems. Therefore, its files in-
clude many files from other subsystems, and they are in-
cluded by these subsystems as well. Observing the files
names in the Godot editor subsystem, we certainly no-
tice that this subsystem serves many other subsystems
within the engine. Examples of these files are: anima-
tion tree editor plugin.cpp, audio stream editor plugin.cpp,
particles 2d editor plugin.h, visual script.cpp.

In terms of most coupled game engines, we observe that
UnrealEngine, panda3d and Urho3d are the three most coupled
game engines. We noticed a correlation between the game
engine coupling and metrics such as the number of files and
forks+stars on GitHub. While this does not imply causation,
this may be evidence that as engines and teams working on
them grow in size, so does coupling.

VI. THREATS TO VALIDITY

This section of the paper discusses possible construct and
external threats to the validity of our findings.

Construct Validity
Subsystem Identification: Our subsystem identification in the
ground truth data was based on Gregory’s definition of “Run-
time Engine Architecture”. The list of 16 subsystems is not
exhaustive. However, other than Gregory’s book, there is no
academic or technical research on game engine architecture. In
the future, we intend to thoroughly examine, in collaboration

with game engine developers, the source code of game engines
to verify the accuracy of this list and possibly include more
essential subsystems.
Clustering Bias: One of the authors manually clustered the
game engine repository files and directories into subsystems.
Despite the fact that the author’s judgement was based on doc-
umentation attached to the repository, the author’s judgement
could be biased.
Multi-Subsystems: During the file clustering process, we en-
countered files that could belong to more than one subsystem.
The author relied on professional experience and engine doc-
umentation to cluster these files into the most corresponding
subsystem. There is also a risk that the author’s judgement
could be biased.
Unidentified Subsystems: During the file clustering process, we
discovered a few files that might belong to subsystems that are
not part of Gregory’s engine architecture. We either discarded
these files or clustered them into subsystems with comparable
functionalities. As discussed in “Subsystem Identification”, we
intend in the future to extensively study game engines to detect
undiscovered or newly created subsystems.
External Validity
Generalisation: We are confident that our approach can be
generalised and applied to any other systems, as well as a
wider range of game engines. In this work, we investigated
10 open-source game engines. Our selection of game engines
might not represent all segments of the market. Popular
engines like Unity and Source were left out of our investigation
because they are not open-source and therefore analysing
their source code is impossible. We reduced this threat by
selecting general-purpose engines that serve all genres of
games. Additionally, we recognise that most game engine
development is closed-source. Therefore, the results may not
apply to all game engines, but ought to be valid for open-
source game engines.
Reliability: To increase the reliability of our findings, we made
all collected data and scripts available online in a public
repository5. This allows other researchers to replicate and
enhance our findings.

VII. CONCLUSION AND FUTURE WORK

Video games are becoming more and more popular and
rapidly evolving to provide gamers with new experiences that
they have never had before. As a result, game development
became more technically complex. Today, game engines are
a key tool to facilitate the process of building high-quality
games. However, when building a game engine, developers
struggle with the lack of knowledge about engine architecture
in general, which engine subsystems to incorporate into the
architecture, and managing architecture complexity to meet
quality standards.

This paper provided an overview of the commonalities and
differences between game-engine architectures in terms of
comprised subsystems. Additionally, it defined a consensus of
architecture subsystems and their degree of coupling to serve



as a foundation for fair comparisons and discussions among
game-engine developers.

Accordingly, the main objective of the approach was to pro-
vide developers with a high-level comparison between game
engine architectures, help developers decide what subsystems
to include in the architecture when building an engine, and
present them with the most coupled subsystem so they can
focus their development work on these subsystems to improve
maintainability and reusability.

We presented an approach, COnsensus Software Architec-
ture (COSA), that provides a ranking of the subsystems of
any set of software architectures, according to some chosen
metrics. We described COSA and applied it to 10 game
engines. To identify what subsystems compose an engine,
we performed an architecture recovery on 10 open-source
game engines by manually analyzing their repositories and
clustering the containing files into predefined subsystems. We
later built an included graph from the extracted subsystems
to calculate their coupling degree and ranked each engine
subsystem by its degree of coupling. To generate our model,
we applied the Kwiksort consensus algorithm to the ranked
lists of architectures. We finally investigated the recovered
architectures and compared their commonalities.

Our review of related works showed a lack of research
studies about game engine architecture. Yet we showed that
game engine architectures share many common subsystems.
In fact, nearly all investigated game engines include the same
subsystems in their architectures (COR, RES, FES, PHY, LLR,
AUD, GMP, SKA). Additionally, our model concluded that all
16 predefined subsystems are essential and should be taken
into consideration when building an advanced game engine.
Besides, the result of applying the consensus algorithm showed
that the most coupled subsystems are core systems, 3rd-party
libraries, world editors, and low-level renderers.

Game-engine developers can compare fairly their game
engines and focus on the “important” subsystems relative
to other game engines. For example, some developers could
decide to put their effort into the core subsystem given its
importance in all game-engine architectures while others could
decide to implement the subsystems missing in their game
engines while yet others could restructure their game engines
to reduce undue coupling among subsystems and follow hard-
learned design choices from other game engines.

In future work, we intend to interview game developers to
get their perspectives on knowing what subsystems to include
in your engine architecture and how coupled these subsystems
can help them with their game engine development process.
There are also two possible research interests. The first is
to expand the study by investigating more game engines
of various types, in different programming languages and
using other software quality metrics such as cohesion and
complexity. The second is to perform a comparative study of
game engine architectures for the purpose of finding why not
all subsystems exist in each engine architecture. Finally, we
will apply COSA to other sets of software architectures, like

those of Web browsers.
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